Math, asked by CherryF3664, 1 year ago

A and B are two non singular matrices such that A^6 = I and AB^2 = BA (B is not equal to I ). Find the value of A such that B^k = I (where I indicates Identity Matrix)a)31b)32c)64d)63

Answers

Answered by dineshpalli
25

answer is 63 . is it brainliest

Attachments:
Answered by rahul123437
12

Option (d) 63.

Given

To find the value of A such that B^k = I.

Where,   A^6 = I

              AB^2 = BA  ( B ≠ I )

             A × A^-^1 = A^-^1 × A = I

                   BA = AB^2

               A^-^1BA = A^-^1AB^2

                      A^-^1BA = B^2

                     B^2 = A^-^1BA

                     B^4 = B^2.B^2 = (A^-^1BA).(A^-^1BA) = A^-^1B^2A

                     B^8=B^4.B^4 =(A^-^1B^2A).(A^-^1B^2A) = A^-^1B^4A

                     B^4 = A^-^1(A^-^1BA)A = A^-^2BA^2

                     B^8 = B^4.B^4 = (A^-^2BA^2)(A^-^2BA^2)

                                         =A^-^2B^2A^2

                                        = A^-^2A^-^1BAA^2

                                       = A^-^3BA^3

                     B^1^6 = A^-^4BA^4

                     B^3^2 = A^-^5BA^5

                       A^6 = I \\A^6A^-^6 = IA^-^6\\I=A^-^6    

                    B^6^4=A^-^6BA^6  

                     B^6^4 = IBI\\                  

                     B^6^4B^-^1 = BB^-^1 =I

                    B^6^3 = I

                     B^k = I

Comparing, B^k = I and B^6^3 = I

Where, k = 63.

Therefore, option (d) 63 is the correct answer.

To learn more...

1. brainly.in/question/3235366

2. brainly.in/question/6562832                                                            

Similar questions