A and B are two sets having 3 elements in common. If n(A)=5 and n(B)=6, find n((A×B)n(B×A))
chapter-sets
Answers
Answered by
1
Step-by-step explanation:
We know that (A×B)∩(B×A)=(A∩B)×(B∩A)
So,n[(A×B)∩(B×A)]=n[(A∩B)×(B∩A)]
Given:Common elements of A and B=3
∴n(A∩B)=n(B∩A)=3
So,
n[(A∩B)×(B∩A)]=n(A∩B)n(B∩A)=3×3=9
∴n[(A∩B)×(B∩A)]=9 elements
Similar questions