Math, asked by deepu556, 1 year ago

a and b are zeroes of polynomial 6x^2+x-2 find a÷b+b÷a​

Answers

Answered by Anonymous
9

ATQ, 'a' and 'b' are the zeroes of polynomial 6x² + x - 2

so let's find the zeroes of the polynomial by splitting method.

= 6x² + x - 2

= 6x² + (4x - 3x) - 2

= 6x² + 4x - 3x - 2

= 2x(3x + 2) - 1(3x + 2)

= (3x + 2) ( 2x - 1)

equating both factors by 0.

  • 3x + 2 = 0

➡ 3x = -2

➡ x = -2/3

  • 2x - 1 = 0

➡ 2x = 1

➡ x = 1/2

a = -2/3 and b = 1/2

hence, value of a/b + b/a

= (-2/3 × 2/1) + (1/2 × -3/2)

= -4/3 + (-3/4)

LCM of 3 and 4 = 3 × 4 = 12

= -16/12 - 9/12

= -25/12

Answered by LovelyG
9

Answer:

\large{\underline{\boxed{\sf -\dfrac{25}{12}}}}

Step-by-step explanation:

Given that;

a and b are the zeroes of the polynomial 6x² + x - 2. On comparing the given equation with ax² + bx + c, we get -

  • a = 6
  • b = 1
  • c = - 2

Sum of zeroes = \bf - \dfrac{b}{a}

⇒ a + b = \sf - \dfrac{1}{6}

Product of zeroes = \bf \dfrac{c}{a}

⇒ ab = \sf - \dfrac{2}{6}

⇒ ab = \sf - \dfrac{1}{3}

Now,

 \sf  \frac{a}{b}   + \frac{b}{a}  \\  \\ \implies  \sf \frac{a {}^{2}  + b {}^{2} }{ab}

\implies \sf  \dfrac{(a + b) {}^{2} - 2ab }{ab}

Substituting the value of above in the equation;

\implies \sf  \frac{ (-  \frac{1}{6}) {}^{2}  - 2 \times ( -  \frac{1}{3}) }{  - \frac{ 1}{3} }  \\  \\ \implies \sf  \frac{ \frac{1}{36}  +  \frac{2}{3}  }{ -  \frac{1}{3} }  \\  \\ \implies \sf  \left( \frac{1}{36} +  \frac{2}{3}   \right) \div   \left(-  \frac{1}{3} \right) \\  \\ \implies \sf  \left( \frac{1 + 24}{36}    \right) \div   \left(-  \frac{1}{3} \right) \\  \\ \implies \sf  \left( \frac{25}{36}  \right) \div   \left(-  \frac{1}{3} \right) \\  \\ \implies \sf  \frac{25}{36}  \times ( - 3) \\  \\ \implies \sf   - \frac{25}{12}

Similar questions