Math, asked by pragyamehrotra, 3 months ago

A and B can do a piece of work in 12 days, B and
8 days, and C and A in 6 days. How long would
take to do the same work alone?
(a) 24 days (b) 32 days (c) 40 days
(d) 48 days (e) None of these

Answers

Answered by IIJustAWeebII
0

 \orange{ \sf{ \large{ \boxed{d)48 \: days}}}}

 \sf{(A + B)’s \: 1 \: day’s \: work =  \frac{1}{12}  -  -  -  -  -  -  -  -  -  -  -  - (1)}

 \sf{(B + C)’s \: 1 \: day’s \: work =  \frac{1}{8} -  -  -  -  -  -  -  -  -  -  -  - (2)}

 \sf{(C + A)’s \: 1 \: day’s \: work  =  \frac{1}{6} -  -  -  -  -  -  -  -  -  -  -  - (3)}

 \sf{ \blue{Adding \: eqution \: 1,\: 2,\: and \: 3}}

 \sf{2(a + b + c) = }

 \sf{ \frac{1}{12}  +  \frac{1}{8}  +  \frac{1}{6}  =  \frac{2 + 3 + 4}{24} =  \frac{9}{24}  }

 \sf{hence \: (A + B + C)'s \: 1 \: day \: work =  \frac{9}{24  \times 2} =  \frac{9}{48} }

 \sf{On \: subtracting \: (III) \: from \: (IV), \: B’s \: 1 \: day’s \: work \frac{9 }{48}  -  \frac{1}{6} }

 \sf{B’s \: 1 \: day’s \: work  =  \frac{9 - 8}{48}  =  \frac{1}{48} }

 \sf{ \green{Hence ,\: B \: can \: completed \: the \: work \: in \: 48 \: days}}

Hope this helps you mate

Similar questions