Math, asked by bhawanaagrawal1979, 10 months ago

A and B can do a piece of work in 30 days B and C in 24 days B and C in 40 days how long will it take them to do the work together in what time can each finish it working alone​

Answers

Answered by rishit55
0

Answer:

They can finish it alone as A in 40 days , B in 60 days and C in 120 days.

Answered by EliteZeal
19

\huge{\blue{\bold{\underline{\underline{Answer :}}}}}

 \:\:

 \large{\green{\underline \bold{\tt{Given :-}}}}

 \:\:

  • A and B can do a piece of work in 30 days

 \:\:

  • B and C in 24 days

 \:\:

  • C and A in 40 days

 \:\:

 \large{\red{\underline \bold{\tt{To \: Find :-}}}}

 \:\:

  • Time required when all of them do the work together

 \:\:

  • Time in which each can finish the work alone

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let A , B , C can complete the work in A , B , C days respectively

 \:\:

 \underline{\bold{\texttt{One day work of A :}}}

 \:\:

 \sf \dfrac { 1 } { A }

 \:\:

 \underline{\bold{\texttt{One day work of B :}}}

 \:\:

 \sf \dfrac { 1 } { B}

 \:\:

 \underline{\bold{\texttt{One day work of C :}}}

 \:\:

 \sf \dfrac { 1 } { C}

 \:\:

A and B can do the work in 30 days

 \:\:

 \sf \dfrac { 1 } { A } + \dfrac { 1 } { B } = \dfrac { 1 } { 30 } ------- (1)

 \:\:

B and C can do it in 24 days

 \:\:

 \sf \dfrac { 1 } { B} + \dfrac { 1 } { C} = \dfrac { 1 } { 24 } ------ (2)

 \:\:

C and A required 40 days

 \:\:

 \sf \dfrac { 1 } { C} + \dfrac { 1 } { A} = \dfrac { 1 } { 40 } ------ (3)

 \:\:

Adding equation (1) , (2) & (3)

 \:\:

 \footnotesize{ \sf \dfrac { 1 } { A } + \dfrac { 1 } { B } + \dfrac { 1 } { B} + \dfrac { 1 } { C} + \dfrac { 1 } { C} + \dfrac { 1 } { A} =  \dfrac { 1 } { 30 } +  \dfrac { 1 } { 24 } + \dfrac { 1 } { 40 }}

 \:\:

 \sf \dfrac { 2 } { A } + \dfrac { 2 } { B } + \dfrac { 2} { C } = \dfrac { 5 + 3 + 4 } { 120 }

 \:\:

 \sf 2 (\dfrac { 1 } { A } + \dfrac { 1 } { B } + \dfrac { 1 } { C }) = \dfrac { 12 } { 120 }

 \:\:

 \sf 2(\dfrac { 1 } { A } + \dfrac { 1 } { B } + \dfrac { 1 } { C }) = \dfrac { 1 } { 10 }

 \:\:

 \sf \dfrac { 1 } { A } + \dfrac { 1 } { B } + \dfrac { 1 } { C } = \dfrac { 1 } { 20} ------- (4)

 \:\:

➨ A + B + C = 20

 \:\:

Hence working together they can finish the work in 20 days

 \:\:

Now ,

 \:\:

From (1)

 \:\:

 \sf \dfrac { 1 } { A } =  \dfrac { 1 } { 30 } - \dfrac { 1 } { B } ----- (5)

 \:\:

From (2)

 \:\:

 \sf \dfrac { 1 } { C} = \dfrac { 1 } { 24 } - \dfrac { 1 } { B} ------ (6)

 \:\:

Putting the values got from (5) & (6) to (4)

 \:\:

 \sf \dfrac { 1 } { A } + \dfrac { 1 } { B } + \dfrac { 1 } { C } = \dfrac { 1 } { 20}

 \:\:

 \sf  \dfrac { 1 } { 30 } - \dfrac { 1 } { B } + \dfrac { 1 } { B } + \dfrac { 1 } { 24 } - \dfrac { 1 } { B} = \dfrac { 1 } { 20}

 \:\:

 \sf \dfrac { 1 } { 30 } + \dfrac { 1 } { 24 } - \dfrac { 1 } { B } = \dfrac { 1 } { 20 }

 \:\:

 \sf \dfrac { 1 } { 30 } + \dfrac { 1 } { 24 } -\dfrac { 1 } { 20 }  = \dfrac { 1 } { B }

 \:\:

 \sf \dfrac { 1 } { B } = \dfrac { 4 + 5 - 6 } { 120 }

 \:\:

 \sf \dfrac { 1 } { B } = \dfrac { 3} { 120 }

 \:\:

 \sf \dfrac { 1 } { B } = \dfrac { 1} { 40 }

 \:\:

➨ B = 40 days ------- (7)

 \:\:

  • Hence B can finish the work alone in 40 days

 \:\:

Putting B = 40 from (7) to (1)

 \:\:

 \sf \dfrac { 1 } { A } + \dfrac { 1 } { B } = \dfrac { 1 } { 30 }

 \:\:

 \sf \dfrac { 1 } { A } + \dfrac { 1 } { 40} = \dfrac { 1 } { 30 }

 \:\:

 \sf \dfrac { 1 } { A } = \dfrac { 1 } { 30 } - \dfrac { 1 } { 40}

 \:\:

 \sf \dfrac { 1 } { A } = \dfrac { 4 - 3 } { 120 }

 \:\:

 \sf \dfrac { 1 } { A } = \dfrac { 1} { 120 }

 \:\:

➨ A = 120 days -------- (8)

 \:\:

  • Hence A can finish the work alone in 120 days

 \:\:

Putting the values of A & B from (7) & (8) to (4)

 \:\:

 \sf \dfrac { 1 } { A } + \dfrac { 1 } { B } + \dfrac { 1 } { C } = \dfrac { 1 } { 20}

 \:\:

 \sf \dfrac { 1 } { 120} + \dfrac { 1 } { 40} + \dfrac { 1 } { C} = \dfrac { 1 } { 20}

 \:\:

 \sf  \dfrac { 1 } { C} = \dfrac { 1 } { 20} - \dfrac { 1 } { 120} - \dfrac { 1 } { 40}

 \:\:

 \sf \dfrac { 1 } { C } = \dfrac { 6 - 1 - 3 }{ 120 }

 \:\:

 \sf \dfrac { 1 } { C } = \dfrac { 2}{ 120 }

 \:\:

 \sf \dfrac { 1 } { C } = \dfrac { 1}{ 60 }

 \:\:

➨ C = 60 days

 \:\:

  • Hence C alone can finish the work in 60 days
Similar questions