Math, asked by rajeshburnawal22, 3 months ago

A and B can do a work in 8 days ,B and C can do it in 12 days and A and C can do it in 9 days. How much time will A,B,C take to do work separately​

Answers

Answered by mddilshad11ab
183

\sf\small\underline\red{Let:-}

\sf{\implies (A+B)'s\:one\:day\:work=\frac{1}{8}}

\sf{\implies (B+C)'s\:one\:day\:work=\frac{1}{12}}

\sf{\implies (A+C)'s\:one\:day\:work=\frac{1}{9}}

\sf\small\underline\red{Given:-}

\sf{\implies Work\:done\:_{(A+B)}=8\:days}

\sf{\implies Work\:done\:_{(B+C)}=12\:days}

\sf{\implies Work\:done\:_{(A+C)}=9\:days}

\sf\small\underline\red{To\: Find:-}

\sf{\implies Work\:done\: separately\:_{(A+B+C)}=?}

\sf\small\underline\red{Solution:-}

\sf{\implies Calculate\: value\:of\:A\:,B\:,C\:by\:eq}

\tt{\implies A+B=\frac{1}{8}------(i)}

\tt{\implies B+C=\frac{1}{12}------(ii)}

\tt{\implies A+C=\frac{1}{9}------(iii)}

  • From eq (i) and (ii) subtracting:-]

\tt{\implies A+B=\frac{1}{8}}

\tt{\implies B+C=\frac{1}{12}}

  • By solving we get here:-]

\tt{\implies A-C=\dfrac{1}{8}-\dfrac{1}{12}}

\tt{\implies A-C=\dfrac{3-2}{8}}

\tt{\implies A-C=\dfrac{1}{24}----(iv)}

  • From eq (iii) and (iv) adding:-]

\tt{\implies A+C=\frac{1}{9}}

\tt{\implies A-C=\frac{1}{24}}

  • By solving we get here:-]

\tt{\implies 2A=\dfrac{8+3}{72}}

\tt{\implies 2A=\dfrac{11}{72}}

\tt{\implies A=\dfrac{11}{144}}

\tt{\implies A=13\dfrac{1}{11}\:days}

  • Putting the value of A in eq (i):-]

\tt{\implies A+B=\frac{1}{8}}

\tt{\implies \frac{11}{144}+B=\frac{1}{8}}

\tt{\implies B=\frac{1}{8}-\frac{11}{144}}

\tt{\implies B=\frac{18-11}{144}}

\tt{\implies B=\frac{7}{144}}

\tt{\implies B=20\frac{4}{7}\:days}

  • Putting the value of B in eq (ii):-]

\tt{\implies \frac{7}{144}+C=\frac{1}{12}}

\tt{\implies C=\frac{1}{12}-\frac{7}{144}}

\tt{\implies C=\frac{12-7}{144}}

\tt{\implies C=\frac{5}{144}}

\tt{\implies C=28\frac{4}{5}\:days}

\sf\large{Hence,}

\bf{\implies A\:_{(can\: word\: separately)}=13\dfrac{1}{11}\:days}

\bf{\implies B\:_{(can\: word\: separately)}=20\dfrac{4}{7}\:days}

\bf{\implies C\:_{(can\: word\: separately)}=28\dfrac{4}{5}\:days}

Answered by Anonymous
47

Given :-

A and B can do a work in 8 days ,B and C can do it in 12 days and A and C can do it in 9 days

To Find :-

Time will A,B,C take to do work separately​

Solution :-

When A + B do together

\sf A+B = \dfrac{1}{8}

When B + C do together

\sf B+C=\dfrac{1}{12}

When A and C do together

\sf A+C=\dfrac{1}{9}

Let us separate A + C

\sf A-C = (A+B)-(B+C)

\sf A-C = \dfrac{1}{8} - \dfrac{1}{12}

By taking LCM of 8 and 12 as 24

\sf A-C = \dfrac{3-2}{24}

\sf A-C = \dfrac{1}{24}

According to the question

\sf A+\cancel{C} = \dfrac{1}{9}

\sf A-\cancel{C} = \dfrac{1}{24}

\sf A+A = \dfrac{1}{9} + \dfrac{1}{24}

\sf 2A = \dfrac{8 + 3}{72}

\sf 2A = \dfrac{11}{72}

\sf 72(2A) = 11

\sf 144A = 11

\sf A = \dfrac{11}{144}

Now

For B

\sf \dfrac{11}{144} + B =\dfrac{1}{8}

\sf B = \dfrac{1}{8} - \dfrac{11}{144}

\sf B = \dfrac{18-11}{144}

\sf B = \dfrac{7}{144}

For C

\sf A+C = \dfrac{1}{9}

\sf \dfrac{11}{144} + C = \dfrac{1}{9}

\sf C = \dfrac{1}{9} - \dfrac{11}{144}

\sf C = \dfrac{16-11}{144}

\sf C = \dfrac{5}{144}

Days taken

A = 144/11

B = 144/7

C = 144/5

Similar questions