Math, asked by rebikathangjam6, 1 month ago

A and B can perform a task in 30 , 40 days. They work together for some days, B drop out of work A complet the remaining job in 9 days after how many days B drop out of work? solution

Answers

Answered by MathCracker
18

Question :-

A and B can perform a task in 30 , 40 days. They work together for some days, B drop out of work A complet the remaining job in 9 days after how many days B drop out of work? solution.

Solution :-

Given :

  • A and B can perform a task in 30 , 40 days.
  • They work together for some days, B drop out of work.
  • A complet the remaining job in 9 days.

Need to find :

  • after how many days B drop out of work ?

Let after d days b dropped out of work that is A and B work together for d days.

According to the question,

1 day work of A

  \sf{ \frac{1}{30}  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  ....\{given \} } \\

1 day work of B

 \sf{ \frac{1}{40} \:  \:  \:  \:  \:  \:  \:  \:  \:  ...\{given \} } \\

Then A & B work together

 \sf : \longmapsto{ \frac{1}{30} +  \frac{1}{40}  } \\  \\ \sf : \longmapsto{ \frac{40 + 30}{1200} } \:   \\  \\ \sf : \longmapsto{ \frac{70}{120} } \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf : \longmapsto{ \frac{7}{120} } \:  \:  \:  \:  \:  \:  \:

By given information : d days work A and B together

\sf : \longmapsto{ \frac{7}{120}  \times d} \\

Remaining work after d days

\sf : \longmapsto{1 -  \frac{7d}{120} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\ \sf : \longmapsto{ \frac{120 - 7d}{120}  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \:  \:  \: ....  \bigg\{equation \: (1)  \bigg\}}

9 days work of A

\sf : \longmapsto{ \frac{1}{30} \times 9 } \:  \:  \:    \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bigg\{equation \: (2)  \bigg\} \\

Now,

Equation (1) = Equation (2)

\sf : \longmapsto{ \frac{120 - 7d}{120}  =  \frac{1}{30} \times 9 } \\  \\ \sf : \longmapsto{ \frac{ \cancel{30}(120 - 7d)}{  \cancel{120}} = 9 } \:  \:  \:  \\  \\ \sf : \longmapsto{ \frac{120 - 7d}{4} = 9 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf : \longmapsto{120 - 7d = 9 \times 4} \:  \:  \:  \\  \\ \sf : \longmapsto{7d = 120 - 36} \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf : \longmapsto{7d = 84} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf : \longmapsto{d =   \cancel\frac{84}{7} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf : \longmapsto{d = 12} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence, B dropped out of work after 12 days.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn more from brainly :

(d) A, B & C will take 16 days to complete the work

together. A & B will take 24 days to complete the work

together, whereas B & C will take a total of 30 days to

complete the same task together. If A leaves the work

after working for 4 days, and B, finding a better job leaves

after 15 days; how many days will take to complete the

task all alone once both A & B leave? [4]

https://brainly.in/question/26405922

Similar questions