Math, asked by ashutoshfreefire9135, 5 months ago

A and B can together colour a counting in 20 minutes &
alone can tolour the painting in 25 minutes in how much
time con B alone colour
Balone colour in the painting?​

Answers

Answered by EliteZeal
83

A n s w e r

 \:\:

G i v e n

 \:\:

  • A and B can together colour a painting in 20 minutes

  • A alone can finish the painting in 25 minutes

 \:\:

F i n d

 \:\:

  • Time in which B alone can finish the painting

 \:\:

S o l u t i o n

 \:\:

  • Let B can finish the painting in 'z' minutes

 \:\:

\underline{ \underline{\bold{\texttt{One minute work of A :}}}}

 \:\:

Given that A can finish the painting in 25 minutes

 \:\:

: ➜  \sf \dfrac { 1 } { 25 }

 \:\:

\underline{ \underline{\bold{\texttt{One minute work of B :}}}}

 \:\:

We assumed B to finish the painting in 'z' minutes

 \:\:

: ➜  \sf \dfrac { 1 } { z}

 \:\:

\underline{ \underline{\bold{\texttt{1 minute work of A \& B together :}}}}

 \:\:

: ➜  \sf \dfrac { 1 } { 25 } + \dfrac { 1 } { z }

 \:\:

\underline{ \underline{\bold{\texttt{20 minutes work of A \& B together :}}}}

 \:\:

: ➜  \sf 20\bigg(\dfrac { 1 } { 25 } + \dfrac { 1 } { z }\bigg)

 \:\:

It is given that working together for 20 minutes A & B can finish the painting

 \:\:

Thus ,

 \:\:

: ➜  \sf 20\bigg(\dfrac { 1 } { 25 } + \dfrac { 1 } { z }\bigg) = 1

 \:\:

: ➜  \sf 20\bigg(\dfrac { z + 25} { 25z } \bigg) = 1

 \:\:

: ➜  \sf 4\bigg(\dfrac { z + 25} { 5z} \bigg) = 1

 \:\:

: ➜ 4(z + 25) = 5z

 \:\:

: ➜ 4z + 100 = 5z

 \:\:

: ➜ 5z - 4z = 100

 \:\:

: : ➨ z = 100

 \:\:

  • Hence B can finish the painting in 100 minutes
Answered by Ranveerx107
0

 \:\:

G i v e n :-

 \:\:

A and B can together colour a painting in 20 minutes

A alone can finish the painting in 25 minutes

 \:\:

F i n d :-

 \:\:

Time in which B alone can finish the painting

 \:\:

S o l u t i o n :-

 \:\:

Let B can finish the painting in 'z' minutes

 \:\:

\underline{ \underline{\bold{\texttt{One minute work of A :}}}}

 \:\:

Given that A can finish the painting in 25 minutes

 \:\:

: ➜  \sf \dfrac { 1 } { 25 }

 \:\:

\underline{ \underline{\bold{\texttt{One minute work of B :}}}}

 \:\:

We assumed B to finish the painting in 'z' minutes

 \:\:

: ➜  \sf \dfrac { 1 } { z}

 \:\:

\underline{ \underline{\bold{\texttt{1 minute work of A \& B together :}}}}

 \:\:

: ➜  \sf \dfrac { 1 } { 25 } + \dfrac { 1 } { z }

 \:\:

\underline{ \underline{\bold{\texttt{20 minutes work of A \& B together :}}}}

 \:\:

: ➜  \sf 20\bigg(\dfrac { 1 } { 25 } + \dfrac { 1 } { z }\bigg)

 \:\:

  • It is given that working together for 20 minutes A & B can finish the painting

 \:\:

Thus ,

 \:\:

: ➜  \sf 20\bigg(\dfrac { 1 } { 25 } + \dfrac { 1 } { z }\bigg) = 1

 \:\:

: ➜  \sf 20\bigg(\dfrac { z + 25} { 25z } \bigg) = 1

 \:\:

: ➜  \sf 4\bigg(\dfrac { z + 25} { 5z} \bigg) = 1

 \:\:

: ➜ 4(z + 25) = 5z

 \:\:

: ➜ 4z + 100 = 5z

 \:\:

: ➜ 5z - 4z = 100

 \:\:

: : ➨ z = 100

 \:\:

  • Hence B can finish the painting in 100 minutes
Similar questions