Math, asked by ItsmysteryboyZ, 4 days ago

A and B together can do a piece of work in 20 days ; B and C together can do it in 15 days , C and A together can do it in 12 days . How long will they take to finish the work , working all together ? How long would each take to do the same work ?

Answers

Answered by mathdude500
39

\large\underline{\sf{Solution-}}

Given that,

A and B together can do a piece of work in 20 days.

So, it means

\rm \:  {(A + B)'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{20}  -  -  - (1) \\

Further given that,

B and C together can do it in 15 days.

So, it means

\rm \:  {(B + C)'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{15}  -  -  - (2) \\

Also, given that

C and A together can do it in 12 days.

So, it means

\rm \:  {(A + C)'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{12}  -  -  - (3) \\

On adding equation (1), (2) and (3), we get

\rm \:  2{(A + B + C)'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{20}  + \dfrac{1}{15}  + \dfrac{1}{12}  \\

\rm \:  2{(A + B + C)'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{3 + 4 + 5}{60}  \\

\rm \:  2{(A + B + C)'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{12}{60}  \\

\rm \:  2{(A + B + C)'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{5}  \\

\rm\implies \:\rm \:  {(A + B + C)'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{10} -  -  - (4)  \\

\rm\implies \:\boxed{\sf{A + B + C \: together \: can \: finish \: a \: work \: in \: 10 \: days }} \\

Now, on Subtracting equation (1) from equation (4), we get

\rm \:  {C'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{10}  - \dfrac{1}{20}  \\

\rm \:  {C'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{2 - 1}{20}  \\

\rm \:  {C'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{20}  \\

\rm\implies \:C \: can \: alone \: finish \: the \: work \: in \: 20 \: days. \\

Now, On Subtracting equation (2) from (4), we get

\rm \:  {A'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{10}  - \dfrac{1}{15}  \\

\rm \:  {A'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{3 - 2}{30}  \\

\rm \:  {A'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{30}  \\

\rm\implies \:A \: can \: alone \: finish \: the \: work \: in \: 30 \: days. \\

On Subtracting equation (3) from (4), we get

\rm \:  {B'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{10}  - \dfrac{1}{12}  \\

\rm \:  {B'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{6 - 5}{60}   \\

\rm \:  {B'}^{s}  \: 1 \: day \: work \:  =  \: \dfrac{1}{60}   \\

\rm\implies \:B \: can \: alone \: finish \: the \: work \: in \: 60 \: days. \\

Answered by BrainlyZendhya
31

We have been given that, A and B together can do a piece of work in 20 days; B and C together can do it in 15 days, C and A together can do it in 12 days.

Firstly Let us assume,

A + B = 20 days And

\implies (A + B)'s 1 day work \sf{=\:{\dfrac{1}{20}}}\:---(1)

B + C = 15 days And

\implies (B + C)'s 1 day work \sf{=\:{\dfrac{1}{15}}}\:---(2)

C + A = 12 days And

\implies (C + A)'s 1 day work \sf{=\:{\dfrac{1}{12}}}\:---(3)

According to the given condition,

Total time would be, A + B + C = (A + B) + (B + C) + (C + A), And so,

\implies (A + B + C)'s 1 day work = (A + B)'s 1 day work + (B + C)'s 1 day work + (C + A)'s 1 day

Substituting (1), (2) & (3) in (4), we get,

\sf\implies{2(A\:+\:B\:+\:C)\:=\:{\dfrac{1}{20}}\:+\:{\dfrac{1}{15}}\:+\:{\dfrac{1}{12}}}

\sf\implies{2(A\:+\:B\:+\:C)\:=\:{\dfrac{3\:+\:4\:+\:5}{60}}}

\sf\implies{2(A\:+\:B\:+\:C)\:=\:{\dfrac{12}{60}}}

\sf\implies{(A\:+\:B\:+\:C)\:=\:{\dfrac{12}{60}}\:\times\:2}

\sf\implies{(A\:+\:B\:+\:C)\:=\:{\dfrac{12}{60}}\:\times\:2}

\sf\implies{\dfrac{1}{10}}

∴ A + B + C together can complete the work in 10 days.

We know that,

  • (A + B + C) - (A + B) = C's work
  • (A + B + C) - (B + C) = A's work
  • (A + B + C) - (C + A) = B's work

Substituting values, we get,

\implies (A + B + C)'s - (A + B)'s 1 day work = \sf{{\dfrac{1}{10}}\:-\:{\dfrac{1}{20}}}

\implies C's 1 day work = \sf{{\dfrac{2\:-\:1}{20}}}

\implies C's 1 day work = \sf{{\dfrac{1}{20}}}

∴ C can complete the work in 20 days.

\implies (A + B + C)'s - (B + C)'s 1 day work = \sf{{\dfrac{1}{10}}\:-\:{\dfrac{1}{15}}}

\implies A's 1 day work = \sf{{\dfrac{3\:-\:2}{30}}}

\implies A's 1 day work = \sf{{\dfrac{1}{30}}}

∴ A can complete the work in 30 days.

\implies (A + B + C)'s - (C + A)'s 1 day work = \sf{{\dfrac{1}{10}}\:-\:{\dfrac{1}{12}}}

\implies B's 1 day work = \sf{{\dfrac{6\:-\:5}{60}}}

\implies B's 1 day work = \sf{{\dfrac{1}{60}}}

∴ B can complete the work in 60 days.

Hence, A + B + C together will finish the work in 10 days. A alone in 30 days, B alone in 60 days and C alone in 20 days.

Similar questions