Math, asked by aneesahmed1465, 8 months ago

A and B together can do a piece of work in 36 days, B and C together can do it in 24 days. A and C together can do it in 18 days. The three working together can finish the work in

A) 8 days B) 16 days C) 30 days D) 32 days

Answers

Answered by vyasananya057
0

Answer:

A+B=36. 1/A+1/B=1/36

B+C=24. 1/B+1/C=1/24

A+C=18. 1/A+1/C=1/18

2(A+B+C)=1/36+1/24+1/18. Now here is the main method now u can solve

Answered by Anonymous
43

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • A and B together can do a piece of work in 36 days

 \:\:

  • B and C together can do it in 24 days

 \:\:

  • A and C together can do it in 18 days

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • Days required when the three are working together

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

Working together, in one day A and B

complete

 \:\:

 \sf \longmapsto (A + B)s \: 1 \: day \: work \: = \dfrac { 1 } { 36 } -----(1)

 \:\:

Working together, in one day B and C

complete

 \:\:

 \sf \longmapsto (B + C)s \: 1 \: day \: work \: =  \dfrac { 1 } { 24 } ------(2)

 \:\:

Working together, in one day A and C

complete

 \:\:

 \sf \longmapsto (A + C)s \: 1 \: day \: work \: = \dfrac { 1 } { 18 } ------(3)

 \:\:

 \underline{\bold{\texttt{Adding (1) , (2) \& (3)}}}

 \:\:

 \sf \longmapsto 2(A + B + C)s \: 1 \: day \: work \: = \dfrac { 1 } { 36 } + \dfrac { 1 } { 24 } + \dfrac { 1 } { 18 }

 \:\:

 \sf \longmapsto 2(A + B + C)s \: 1 \: day \: work \: = \dfrac { 4 + 3 + 2 } { 72 }

 \:\:

 \sf \longmapsto 2(A + B + C)s \: 1 \: day \:  work \: = \dfrac { 1 } { 8 }

 \:\:

 \sf \longmapsto (A + B + C)s \: 1 \: day \:  work \: = \dfrac { 1 } { 8 }\times2

 \:\:

 \sf \longmapsto (A + B + C)s \: 1 \: day \:  work \: = \dfrac { 1 } { 16 }

 \:\:

Hence A , B , C working together can finish the work in 16 days

 \:\:

 \red{\bold{Hence \: , \: Option \: B) \: is \: correct}}

\rule{200}5

Similar questions