Math, asked by hluboihap6s33w, 1 year ago

A and B together can do a piece of work in 6 days. If B alone can finish it in 8 days, then A alone can do the work in how many days?

Answers

Answered by rakeshmohata
33
Hope u like my process
======================
=> Let A alone can do a work in x days

=> B alone can do a work in 8 days.

=> in 6 days A can do  \frac{1}{x} \times 6 = \frac{6}{x} Part of work

=> in 6 days B can do,  \frac{1}{8 } \times 6 = \frac{3}{4} Part of work.
__________________________
Thus,.. By problem,
=-=-=-=-=-=-=-=-=-=-==

 = > \frac{6}{x} + \frac{3}{4} = 1 \\ \\ = > \frac{6}{x} = 1 - \frac{3}{4} = \frac{1}{4} \\ \\ = > \bf x = 6 \times 4 = 24
___________________________
So

A alone can do a work in 24 days.
___________________________
Hope this is ur required answer

Proud to help you

hluboihap6s33w: The options are.. a)10 days. b) 12 days c) 24 days d)8 days
NidhraNair: the answer is 24????
rakeshmohata: now check it..
rakeshmohata: sorry I took wrong values..
hluboihap6s33w: OK thanks bro
rakeshmohata: welcome..
hluboihap6s33w: Can you show me the short cut method please
rakeshmohata: sure
Answered by TooFree
31

A and B can do the work in 6 days

⇒ 1 day = 1/6 of the work


B can do the work in 8 days

⇒ 1 day = 1/8 of the work


Find the number of days needed for A to do it alone:

1 day = 1/6 - 1/8 = 1/24 of the work

1/24 of the work = 1 day

24/24 of the work = 1 x 24 = 24 days


Answer: A can do the work in 24 days.


hluboihap6s33w: Thanks
TooFree: My pleasure :)
sushank93: nice answer
Similar questions