Math, asked by BrainlyStar909, 3 months ago

A and B together can do a piece of work in 8 days,B and C together in 10 days while C and A together in 6 days if they all work together the work will completed in...

 \rm \: Urgent  \: Request...
 \rm \: Help \:  me  \: out  \: please...



Answers

Answered by rockysingh45
1

(A + B)’s 1 day’s work = 1/8…….(i)

(B + C)’s 1 day’s work = 1/6…….(ii)

(C + A)’s 1 day’s work = 1/10…….(iii)

On adding all above equations

2(A + B + C)’s 1 day’s work = 1/8+1/6+1/10

= 15+20+12/120 = 47/120

∴ (A + B + C)’s 1 day’s work = 47/240

∴ A, B and C together will finish the work in

240/47 days

Answered by SachinGupta01
5

 \bf \:  \underline{Given} :

\sf \: \rightarrow  \:  A  \: and \:  B \:  together \:  can \:  do \:  a  \: piece \:  of  \: work \:  in  \: 8 \:  days.

 \sf \: \rightarrow  \:B \:  and \:  C \:  together \:  in \: 10 \: days.

 \sf \: \rightarrow  C  \: and \:  A \:  together \:  in  \: 6 \: days.

 \bf \:  \underline{To  \: find} :

\sf \: \rightarrow  How \:  many \: days \: they \: will \: take \: if \: they \: work \: together.

 \bf \:  \green  { \star} \: \underline{ So,  \: Let's \: Start}\:  \green{ \star}

 \sf \: A  \: and \:  B's  \:one \: day  \: work =  \dfrac{1}{8}

 \sf \: \:B \:  and \:  C's  \: one \: day  \: work   =  \dfrac{1}{10}

 \sf \: C  \: and \:  A's \: one \: day  \: work =  \dfrac{1}{6}

 \bf \: Now,

\sf \: \: A,  \: B  \: and \:  C's  \: one \:  day \:  work = \dfrac{1}{8}  + \dfrac{1}{10} + \dfrac{1}{6}

 \sf \longrightarrow \: \dfrac{1}{8}  + \dfrac{1}{10} + \dfrac{1}{6}

 \sf \: Finding \: the \: common  \: denominators.

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:8 - 10- 6 \:\:\:}}}\\ {\underline{\sf{2}}}&{\underline{\sf{\:\:4 - 5 - 3\:\:\:}}}\\ {\underline{\sf{2}}}&{\underline{\sf{\:\:2- 5- 3\:\:\:}}}\\ {\underline{\sf{3}}}& \underline{\sf{\:\:1 - 5 - 3 \:\:\:}} \\\underline{\sf{5}}&{\underline{\sf{\:\:1 - 5-  1\:\:\:}}} \\ \underline{\sf{}}&{\sf{\:\:1 - 1 - 1 \:\:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

 \sf \: LCM =  \underline{2 \times 2 \times2} \times 3 \times 5

 \sf \: LCM =  8\times 3 \times 5 = 120

\longrightarrow \: \sf \dfrac{1}{8} \times \dfrac{15}{15} = \dfrac{15}{120}

\longrightarrow \: \sf \dfrac{1}{10} \times \dfrac{12}{12} = \dfrac{12}{120}

\longrightarrow \: \sf \dfrac{1}{6} \times \dfrac{20}{20} = \dfrac{20}{120}

 \sf \: Now, \: we \: have \: to \: add : \dfrac{15}{120},  \: \dfrac{12}{120},  \: \dfrac{20}{120}

 \sf \longrightarrow \: \dfrac{15}{120} +   \: \dfrac{12}{120} +  \: \dfrac{20}{120}

\sf \: Taking \: denominators \: as \: common.

 \sf \longrightarrow \: \dfrac{15 + 12 + 20}{120}

 \sf \: Adding \:  the  \: numerators.

 \sf \longrightarrow \: \dfrac{47}{120}

 \sf \: Thus \:time\: taken \: by \: A, \:  B,  \: C \:  to \:  finish \: the \: work = 1  \: \div  \: \dfrac{47}{120}

 \sf \: 1  \: \div  \: \dfrac{47}{120} \:  \:  =  \dfrac{120}{47}

 \underline{ \boxed{ \pink{ \sf \: Answer = 5 \dfrac{4}{47} \:  days}}}

 \sf \: Thus  \: A,  \: B,  \: C \:  together  \: will \:  finish \:  the \:  work \:  in \: 5  \dfrac{4}{47} \:  days..

Similar questions