Math, asked by hriday33, 2 months ago

a, ß and y are zeroes of the polynomial x³ + px² + qx + 2 such that a. ß+1=0.
Find the value of 2p + q +5​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: \alpha, \beta, \gamma \: are \: zeroes \: of \:  {x}^{3} +  {px}^{2} + qx + 2

and

\rm :\longmapsto\: \alpha  \beta  + 1 = 0

\bf\implies \: \alpha  \beta  =  -  \: 1

We know, that

\rm :\longmapsto\: \alpha  \beta  \gamma  =  -  \: \dfrac{constant \: term}{coefficient \: of \:  {x}^{3} }

Thus,

\rm :\longmapsto\:( - 1) \gamma  =   -  \: \dfrac{2}{1}

\bf\implies \: \gamma  = 2

Since,

\rm :\longmapsto\: \gamma  \: is \: zero \: of \:  {x}^{3} + p {x}^{2} + qx + 2

\rm :\longmapsto\: 2  \: is \: zero \: of \:  {x}^{3} + p {x}^{2} + qx + 2

\rm :\longmapsto\:{2}^{3} + p {(2)}^{2} + 2q + 2 = 0

\rm :\longmapsto\:8 + 4p + 2q + 2 = 0

\rm :\longmapsto \:  4p + 2q + 10 = 0

\rm :\longmapsto \:  2(2p + q + 5) = 0

\rm :\longmapsto \:  2p + q + 5= 0

Thus,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: Value \: of \: 2p + q + 5 = 0}}}

Additional Information :-

\rm :\longmapsto\: \alpha, \beta, \gamma \: are \: zeroes \: of \:  {ax}^{3} +  {bx}^{2} + cx + d \: then \:

 \boxed{ \sf \:  \alpha   + \beta  +  \gamma  =  -  \:  \frac{b}{a}}

 \boxed{ \sf \:  \alpha  \beta  + \beta  \gamma  +  \gamma  \alpha  =   \:  \frac{c}{a}}

 \boxed{ \sf \:  \alpha  \beta  \gamma  =  -  \:  \frac{d}{a}}

Similar questions