Math, asked by 13255, 11 months ago

(A/ax-1)+(b/bx-1)=a+b

Answers

Answered by MaheswariS
52

\text{Consider,}

\displaystyle\frac{a}{ax-1}+\frac{b}{bx-1}=a+b

\displaystyle\frac{a(bx-1)+b(ax-1)}{(ax-1)(bx-1)}=a+b

\displaystyle\;a(bx-1)+b(ax-1)=(a+b)(ax-1)(bx-1)

\displaystyle\;abx-a+abx-b=(a+b)[abx^2-ax-bx+1]

\displaystyle\;2abx-(a+b)=(a+b)[abx^2-(a+b)x+1]

\displaystyle\;2abx-(a+b)=(a+b)abx^2-(a+b)^2x+(a+b)

\displaystyle\;(a+b)abx^2-2abx-(a+b)^2x+2(a+b)=0

\displaystyle\;abx((a+b)x-2)-(a+b)((a+b)x-2)=0

\displaystyle\;((a+b)x-2)(abx-(a+b))=0

\implies\;(a+b)x-2=0\;\text{or}\;abx-(a+b)=0

\implies\;x=\frac{2}{a+b},\frac{a+b}{ab}

\therefore\textbf{The solution set is}\;\{\bf\frac{2}{a+b},\frac{a+b}{ab}\}

Similar questions