Math, asked by manterasu545, 10 months ago

a/(ax-1)+b/(bx-1) = a+b [ x ≠ 1/a, 1/b ]
Solve the quadratic equation and find its roots

Answers

Answered by patelhetalv20
0

Step-by-step explanation:

Given Data: a/(ax-1) + b/(bx-1) = a+b ; To find the value of x:

a/ax-1 + b/bx-1 = a+b

Step 1:

(abx - a +abx-b)/(ax-1)(bx-1) = a+b

2 a b x-a-b=(a+b)\left(a b x^{2}-a x-b x+1\right)2abx−a−b=(a+b)(abx

2

−ax−bx+1)

Step 2:

2 \mathrm{abx}-\mathrm{a}-\mathrm{b}=\mathrm{a}^{2} \mathrm{bx}^{2}-\mathrm{a}^{2} \mathrm{x}-\mathrm{abx}+\mathrm{a}+\mathrm{ab}^{2} \mathrm{x}^{2}-\mathrm{abx}-\mathrm{b}^{2} \mathrm{x}+\mathrm{b}2abx−a−b=a

2

bx

2

−a

2

x−abx+a+ab

2

x

2

−abx−b

2

x+b

Step 3:

\begin{lgathered}\left.\begin{array}{l}{x\left(2 a b-a^{2} b+a^{2}-a b^{2}+b^{2}\right)=2 a+2 b} \\ {x\left[(a+b)^{2}-a^{2} b-a b^{2}\right]=2 a+2}\end{array} \quad \text { (therefore, }(a+b)^{2}=a^{2}+b^{2}+2 a b\right)\end{lgathered}

x(2ab−a

2

b+a

2

−ab

2

+b

2

)=2a+2b

x[(a+b)

2

−a

2

b−ab

2

]=2a+2

(therefore, (a+b)

2

=a

2

+b

2

+2ab)

Step 4:

x = 2(a+b)/(a+b)(a+b-ab) (cancelling a+b)

x = 2/( a+b-ab)

Please mark me brainliest

Answered by Anisha5119
4

Answer:

VERIFIED ANSWER ❤️

DROP SOME ❤️

Attachments:
Similar questions