a:b=1:2; b:c=3:4; c:d= 6:9;d:e = 12:16 find the value of a:b:c:d:e
Answers
Given:-
- A : B = 1:2
- B : C = 3 : 4
- C : D = 6: 9
- D : E = 12 : 16
To find :-
- A : B : C : D : E
SOLUTION :-
A : B = 1: 2
B : C = 3:4
In this B is the common Since LCM of B ratio 2, 3 is 6
In order to get ratio of B same as 6 So, multiply with 3
A : B = 1:2 (3)
A : B = 3:6
B : C = 3:4 (2)
In order to get ratio of B same as 6 So, multiply with 2
B : C = 6 : 8
A : B : C = 3:6 : 8
Multiply A : B : C with 3 In order to find the ratio of A : B : C :D
A : B : C = (3:6:8)3
A: B : C = 9: 18 : 24-------EQ 1
Now, if you observe ratio of B is same
Since , B : C = 6: 8
Now , C : D = 6: 9
C ratio is not same LCM of 8, 6 is 24
B : C = (6:8)3
B : C = 18 : 24
C : D = (6: 9) 4
C : D = 24 : 36
A : B : C : D = 9 : 18: 24 : 36 ----- EQ 2
C : D = 24 :36
D : E = 12 : 16
Here D ratio is same Hence LCM of 36 , 12 is 36
C : D = (24:36) 1
C : D = 24 : 36
D : E = (12:16) 3
D : E = 36 : 48
Now D ratio is same
C : D :E = 24 : 36 : 48 ------ EQ 3
If you observe equation 2, 3 ratio of C , D are same
A : B : C : D : C : D :E = 9 :18 :24 : 36 : 24 : 36 : 48
A : B : C : D : E = 9: 18 : 24 : 36 : 48
Simplifying this
A : B : C : D : E = 3 : 6 : 8 : 12 : 16
So, the ratio of A : B : C : D : E = 3 : 6 : 8 : 12 : 16