Math, asked by mandesin4027, 1 year ago

a+b=11,ab=28 find the value of a3+1/a3

Answers

Answered by satishydv
1
Solve and get the answer
Attachments:
Answered by mysticd
0

 Given \:a + b = 11 \: ---(1) \: and \\ab = 28\: ---(2)

 i ) ( a - b )^{2} = ( a + b )^{2} - 4ab \\= 11^{2} - 4 \times 28 \\= 121 - 112 \\= 9 \\= 3^{2}

 a - b = 3 \: ---(2)

/* Adding equations (1) and (2) , we get *\

 \implies 2a = 14

 \implies a = \frac{14}{7}

 \implies a = 7 \: ---(3)

 Now, Value \: of \: a^{3} + \frac{1}{a^{3}} \\= 7^{3} + \frac{1}{7^{3}}\\= 343 + \frac{1}{343} \\= \frac{ 117649+1}{343} \\= \frac{117650}{343}

Therefore.,

 \red {Value \: of \: a^{3} + \frac{1}{a^{3}}} \\\green{ = \frac{117650}{343} }

•••♪

Similar questions