a+b=11 and a^2+b^2=65 ; find a^3+b^3
ans 407
Answers
Answered by
13
Given : a + b = 11, a² + b² = 65
To find : a³ + b³
Solution :
a² + b² = 65
⇒ (a + b)² - 2ab = 65
⇒ 11² - 2ab = 65
⇒ 2ab = 121 - 65
⇒ 2ab = 56
⇒ ab = 28
Now, a³ + b³
= (a + b) (a² + b² - ab)
= 11 * (65 - 28)
= 11 * 37
= 407
⇒ a³ + b³ = 407
Identity rules :
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- (a + b)³ = a³ + 3a²b + 3ab² + b³
- (a - b)³ = a³ - 3a²b + 3ab² - b³
- a³ + b³ = (a + b) (a² - ab + b²)
- a³ - b³ = (a - b) (a² + ab + b²)
Answered by
4
Solution:
It is given that,
a+b = 11 ---(1)
a²+b² = 65 ----(2)
we know the algebraic identity:
a²+b²+2ab = (a+b)²
=> 65 + 2ab = (11)²
/* from (1) & (2) */
=> 65 + 2ab = 121
=> 2ab = 121-65
=> 2ab = 56
=> ab = 56/2 = 28 ---(3)
Now ,
a³+b³ = (a+b)³ - 3ab(a+b)
= (11)³ - 3×28×11
= 1331 - 924
= 407
Therefore,
a³+b³ = 407
••••
Similar questions