Math, asked by sourabh345, 11 months ago

a+b=12 and ab= 14 find the value of a and b

Answers

Answered by nithinkodipyaka
2

Answer: If b=6+5√2 ; a=-6+5√2

If b=6-5√2 ; a = -(6+5√2)

Answered by Anonymous
5

\bigstar \: \: given \: data \: is \: below \\  \\  \:  \:  \: a + b = 12......equation(1) \\  \\  \:  \:  \: ab = 14........equation(2) \\  \\  \:  \:  \:  =  > a + b = 12 \\  \\  \:  \:  \:  =  > a = 12 - b.....equation \: (3) \\  \\  \bigstar \: equation(3) \: value \: put \: in \: equation(2) \\  \\  \:  \:  \:  =  > ab = 14 \\  \\  \:  \:  \:  =  > (12 - b)b = 14 \\  \\  \:  \:  \:  =  > 12b -  {b}^{2}  = 14 \\  \\  \:  \:  \:  =  >  {b}^{2}  - 12b + 14 = 0 \\  \\  \:  \: \:  \:  \:  \:  \:  \:   \:  \delta =  { (- 12)}^{2}  - 4(1)(14) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:   \delta = 144 - 56 = 88 \\  \\  \:  \:  \:   \:  \:  \:  \:  \:  \: b \:  =  \frac{ - ( - 12)  \pm  \sqrt{ \delta} }{2(1)}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  b =  \frac{12 \pm \sqrt{88} }{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: b = 6 +  \frac{ \sqrt{4 \times 22} }{2}  \:  \:  \:  \:  \:  \:  \: or \:  \: b = 6 +  \frac{ \sqrt{4 \times 22} }{2}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: b = 6  \pm  \frac{2 \sqrt{22} }{2 }  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \: b = 6  +  \sqrt{22 }  \:  \:  \: or \:  \: 6 -  \sqrt{22}  \\  \\  \\  \:  \:  \:  \: when \\  \:  \:  \:  \:  \:  \:  \: b \:  = 6 +  \sqrt{22}  \:  \:  \: then \:  \: a = 6 -  \sqrt{22}  \\  \\  \:  \:  \:  \:  \:  \:  \: b = 6 -  \sqrt{22}  \:  \:  \: then \:  \:  \: a = 6 +  \sqrt{22}  \:

Similar questions