Math, asked by sauravkumar74, 1 year ago

(a + b)^2 + (a - b)^2 is equal to​

Answers

Answered by Anonymous
8

given :- (a + b)^2 + (a - b)^2

according to algebraic identity,

  • (a + b)^2 = a^2 + 2ab + b^2

  • (a - b)^2 = a^2 - 2ab + b^2

∴ (a + b)^2 + (a - b)^2 =  (a^2 + 2ab + b^2) + (a^2 - 2ab + b^2)

= a^2 + 2ab + b^2 + a^2 - 2ab + b^2

= a^2 + a^2 + b^2 + b^2 + 2ab - 2ab

= 2a^2 + 2b^2

hence, (a + b)^2 + (a - b)^2 is equal to 2a^2 + 2b^2

Answered by Anonymous
6

Solution:-

 \bold{(a + b) {}^{2}  + (a - b) {}^{2} }

As, we know that

(a+b)²= a²+2ab+b² -(1)

and,

(a-b)²= a²-2ab+b² -(2)

Using equation -(1) and -(2)

 \bold{ = (a {}^{2}  + 2ab + b {}^{2} ) + (a {}^{2} - 2ab   + b {}^{2}  )}

 =  \bold{a {}^{2}   + \cancel{ 2ab} + b {}^{2}  + a {}^{2}   -  \cancel{2ab }+ b {}^{2} }

  =  \bold{2a {}^{2}   + 2b {}^{2} }

 \huge \bold \red{= 2(a {}^{2}  + b {}^{2} )}

Similar questions