Math, asked by sangeeta23344, 9 months ago

(a+b)2 + (a-b) 2 prove that​

Answers

Answered by sharani1556reddy
1

Step-by-step explanation:

a^2+b^2+2ab+a^2+b^2-2ab

a^2+b^2+a^2+b^2

2a^2+2b^2

2(a^2+b^2)

Answered by sadashivhatwar8
1

Answer:

How do I prove that (a+b)² × (a-b)² = (a²-b²)² ?

Dreaming of clearing CA? Make it a reality on Unacademy.

[math](a+b)^2×(a-b)^2=(a^2-b^2)2[/math]

Write the formulas of [math](a+b)^2[/math] and [math](a-b)^2[/math]

i.e.,

[math](a+b)^2=a^2+2ab+b^2[/math]

[math](a-b)^2=a^2-2ab+b^2[/math]

Now, put the formulas,

[math](a+b)^2×(a-c)^2\;\;\implies(a^2+2ab+b^2)(a^2-2ab+b^2)[/math]

Multiply each term of first factor by each term of second factor,

[math]a^4-2a^3b+a^2b^2+2a^3b-4a^2b^2+2ab^3+b^2a^2-2ab^3+b^4[/math]

Cancel out the like terms with opposite signs,

[math]a^4-\not 2\not a^3\not b+a^2b^2+\not 2\not a^3\not b-4a^2b^2+\not 2\not a\not b^3+b^2a^2-\not 2\not a\not b^3+b^4[/math]

[math]a^4+a^2b^2-4a^2b^2+b^2a^2+b^4[/math]

Rewrite it as,

([math]a^2)^2-2a^2b^2+(b^2)^2\;\;\;\;\;\;\;\;\;\;\;(\because a^2b^2-4a^2b^2+b^2a^2=-2a^2b^2)[/math]

Now the expression is in the form of [math](a-b)^2[/math]

where, [math]a=a^2[/math] and [math]b=b^2 [/math]

Therefore,

([math]a^2)^2-2a^2b^2+(b^2)^2=(a^2-b^2)2[/math]

I hope it’ ll help. mark as brainlest Answer plzzzzzzzzzzzzzzz ❤️❤️❤️❤️

Similar questions