Math, asked by namratabhadane937, 9 days ago

(a+b)^2+(aw+bw^2)^2+(aw^2+bw)^2 =6ab write correct answer ​

Answers

Answered by mathdude500
8

Given Question

Prove that

 \sf \:  {(a + b)}^{2} +  {(a\omega  + b {\omega }^{2})}^{2} +  {(a {\omega }^{2} + b\omega )}^{2} = 6ab

 \green{\large\underline{\sf{Solution-}}}

Consider, LHS

 \rm :\longmapsto\:\sf \:  {(a + b)}^{2} +  {(a\omega  + b {\omega }^{2})}^{2} +  {(a {\omega }^{2} + b\omega )}^{2}

 \sf \:  =  \:  {a}^{2} +  {b}^{2} + 2ab +  {a}^{2} {\omega }^{2} +  {b}^{2} {\omega }^{4} + 2(a\omega )(b {\omega }^{2}) + {a}^{2} {\omega }^{4} +  {b}^{2} {\omega }^{2} + 2(b\omega )(a {\omega }^{2})

 \sf \:  =  \:  {a}^{2} +  {b}^{2} + 2ab +  {a}^{2} {\omega }^{2} +  {b}^{2} {\omega }^{3}(\omega ) + 2ab{\omega }^{3}+ {a}^{2} {\omega }^{3}(\omega ) +  {b}^{2} {\omega }^{2} + 2ab{\omega }^{3}

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ {\omega }^{3} = 0}}} \\

So, using this, we get

 \sf \:  =  \:  {a}^{2} +  {b}^{2} + 2ab +  {a}^{2} {\omega }^{2} +  {b}^{2} \omega + 2ab+ {a}^{2}\omega+  {b}^{2} {\omega }^{2} + 2ab

 \sf \:  =  \:  {a}^{2}(1 + \omega  +  {\omega }^{2}) +  {b}^{2}(1 + \omega  +  {\omega }^{2}) + 6ab

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ 1 + \omega  +  {\omega }^{2} = 0}}} \\

So, using this, we get

 \sf \:  =  \:  {a}^{2}(0) +  {b}^{2}(0) + 6ab

\rm \:  =  \: 6ab

Hence,

\boxed{\tt{ \sf \:  {(a + b)}^{2} +  {(a\omega  + b {\omega }^{2})}^{2} +  {(a {\omega }^{2} + b\omega )}^{2} = 6ab}} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE : PROOF OF CUBE ROOTS OF UNITY

\rm :\longmapsto\:x =  {\bigg(1\bigg) }^{\dfrac{1}{3} }

So, on cubing both sides, we get

\rm :\longmapsto\: {x}^{3} = 1

\rm :\longmapsto\: {x}^{3}  -  1 = 0

\rm :\longmapsto\:(x - 1)( {x}^{2}  + x + 1)= 0

\rm\implies \:x = 1

OR

\rm\implies \: {x}^{2} + x + 1 = 0

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ {1}^{2} - 4(1)(1) } }{2(1)}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{ 1 - 4}}{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{-3}}{2}

\rm :\longmapsto\:x = \dfrac{ - 1 \:  \pm \:  \sqrt{3} \: i}{2}

\rm\implies \:x = \dfrac{ - 1 \:  +  \:  \sqrt{3} \: i}{2} \:  \: or \:  \: x = \dfrac{ - 1 \: -   \:  \sqrt{3} \: i}{2}

So, Cube roots of unity are

\rm\implies \:x =1 \:  \: or \:  \:  \dfrac{ - 1 \:  +  \:  \sqrt{3} \: i}{2} \:  \: or \:  \: x = \dfrac{ - 1 \: -   \:  \sqrt{3} \: i}{2}

where,

\purple{\rm :\longmapsto\:\dfrac{ - 1 \:  +  \:  \sqrt{3} \: i}{2} = \omega }

and

\purple{\rm :\longmapsto\:\dfrac{ - 1 \:   - \:  \sqrt{3} \: i}{2} =  {\omega }^{2}  }

Now, Consider

\purple{\rm :\longmapsto\:1 + \omega  +  {\omega }^{2}}

 \sf \:  =  \: 1 + \dfrac{ - 1 \:  +  \:  \sqrt{3} \: i}{2} + \dfrac{ - 1 \:  -   \:  \sqrt{3} \: i}{2}

 \sf \:  =  \: \dfrac{2 - 1 \:  +  \:  \sqrt{3} \: i  \: -  \: 1 \:  -  \:  \sqrt{3} \:  i}{2}

 \sf \:  =  \: 0

Hence,

\purple{\rm :\longmapsto\:\boxed{\tt{ 1 + \omega  +  {\omega }^{2} = 0}}} \\

Now, Consider

\purple{\rm :\longmapsto\: {\omega }^{3}}

 \sf \:  =  \: \omega  \times  {\omega }^{2}

 \sf \:  =  \: \dfrac{ - 1 \:  +  \:  \sqrt{3} \: i}{2} \times \dfrac{ - 1 \:  -  \:  \sqrt{3} \: i}{2}

 \sf \:  =  \: \dfrac{ {( - 1)}^{2} -  {( \sqrt{3}i) }^{2} }{4}

 \sf \:  =  \: \dfrac{1 -  {3i}^{2} }{4}

 \sf \:  =  \: \dfrac{1 - 3( - 1)}{4}

 \sf \:  =  \: \dfrac{1 + 3}{4}

 \sf \:  =  \: \dfrac{4}{4}

 \sf \:  =  \: 1

Hence,

\purple{\rm :\longmapsto\:\boxed{\tt{ {\omega }^{3} = 0}}} \\

Similar questions