(a+b)² + (b-a)² = a² + b²
prove that
Answers
Answered by
0
Answer:
Let first term be :
(a - b)(a - b)(a−b)(a−b)
=(a-b)²
second term=
{a }^{ 2} + {b}^{2}a
2
+b
2
d=second term - first term
=
{a}^{2} + {b}^{2} - ( {a}^{2} - 2ab + {b}^{2} )a
2
+b
2
−(a
2
−2ab+b
2
)
=2ab
third term= first term+2(d)
=
{a}^{2} - 2ab + {b }^{2} + 2(2ab)a
2
−2ab+b
2
+2(2ab)
= {a}^{2} + 2ab + {b}^{2}=a
2
+2ab+b
2
= {(a + b)}^{2}=(a+b)
2
Hence , it forms an A.P. :
(a-b)²,(a²+b²) & (a+b)²
Please mark me as brainlist
Answered by
1
The result of your question seems to be wrong, Kindly recheck
(a+b) ²= a²+ 2ab+ b²
(b-a) ²= a² -2ab +b²
So, (a+b) ² + (b-a) ² = a² +2ab+ b² +a² -2ab +b²
=2(a²+b²)
Hope it helps!
Similar questions