Math, asked by ancymol20p6, 5 months ago

(a+b)2 = + +
find (201)2 using the above principle
plzzzzz answerr urgent okkkkk​

Answers

Answered by Mɪʀᴀᴄʟᴇʀʙ
22

\LARGE{\bf{\underline{\underline{Correct \ Question:-}}}}

(a + b)² = a² + 2ab + b²

Find (201)² using the above principle.

\LARGE{\bf{\underline{\underline{Solution:-}}}}

(201)²

⟹ (200 + 1)²

⟹ (200)² + 2 × 200 × 1 + (1)²

⟹ 40000 + 400 + 1

⟹ 40000 + 401

⟹ 40401

Hence,

(201)² = 40401

\boxed{\begin{minipage}{7 cm}\boxed{\bigstar\:\:\textbf{\textsf{Algebric\:Identity}}\:\bigstar}\\\\1)\bf\:(A+B)^{2} = A^{2} + 2AB + B^{2}\\\\2)\sf\: (A-B)^{2} = A^{2} - 2AB + B^{2}\\\\3)\bf\: A^{2} - B^{2} = (A+B)(A-B)\\\\4)\sf\: (A+B)^{2} = (A-B)^{2} + 4AB\\\\5)\bf\: (A-B)^{2} = (A+B)^{2} - 4AB\\\\6)\sf\: (A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}\\\\7)\bf\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\8)\sf\: A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})\\\\\end{minipage}}

(View it in web. )

Answered by Anonymous
25

Correct Question :

 \tt {(a + b)^2 = a^2 + b^2 + 2ab }

Find (201)² using the above principle.

Solution :

ㅤㅤㅤㅤㅤㅤㅤㅤ \tt {(201)^2 }

ㅤㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤ : \implies \tt {(200 + 1)^2 }

ㅤㅤㅤㅤㅤㅤ

 \tt { Using \: identity : (a + b) ^2 = a^2 + b^2 + 2ab }

ㅤㅤㅤㅤㅤㅤ

ㅤㅤ : \implies \tt {(200)^2 + (1)^2 + 2(200)(1) }

ㅤㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤ : \implies \tt {4000 + 1 +400 }

ㅤㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ : \implies \tt {40401 }

ㅤㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤ \boxed {\underline{\tt (201)^2 = 40401}}

Similar questions