a+ b /2 = sin A-B B /2 cosec C/2
Answers
Answered by
0
Answer:
Step-by-step explanation:
Given ABC is a triangle.
We know that,
\boxed {\angle A + \angle B + \angle C = 180}
/* angle sum property */
Divide both sides by 2 , we get
\implies \frac{\angle A + \angle B + \angle C}{2} =\frac{180}{2}}
\implies \frac {\angle A + \angle B}{2}= 90 -\frac{\angle C}{2}
\implies sec(\frac {\angle A + \angle B}{2})= sec(90 -\frac{\angle C}{2})
\implies sec(\frac {\angle A + \angle B}{2})= cosec(\frac{\angle C}{2})
Therefore,
sec(\frac {\angle A + \angle B}{2})= cosec(\frac{\angle C}{2})
Similar questions