A+B=225°
prove that ..
(1+tanA)(1+tanB) = 2
Attachments:
Answers
Answered by
1
Answer:
A+B=225;
Taking tangent of the angles, we get
Tan(A+B)=Tan(225)=Tan(180°+45°);
LHS:
Tan(A + B) = (Tan A + Tan B)/(1 − Tan A Tan B);
RHS:
Tan(180°+45°)=(Tan180°+Tan45°)/(1-Tan180°.Tan45°);
**** Tan180°=0 & Tan45°=1****
> Tan(225°)=1;
Equating LHS and RHS,
Tan A + Tan B= 1 − Tan A Tan B;
> Tan A + Tan B + Tan A Tan B=1;
> Tan A + Tan B + Tan A Tan B + 1= 1+1; {adding 1 on both the sides}
After factorisation,
(1+TanA)(1+TanB)=2
Similar questions