Math, asked by anand1075, 1 year ago

a+b=25 and ab=25 find the value of a-b

Answers

Answered by abhi569
2
( a + b ) =25

On squaring both sides, we get



( a + b )^2 = 25^2

 {a}^{2}  +  {b}^{2}  + 2ab \:  = 625 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  | \: \bold{ \:  {(a + b)}^{2}  =  {a  }^{2}  +  {b}^{2}  + 2ab}



 \bold{ \underline{ value \: of \: ab \: is \: given \: and \: it \: is \: 25}}

So,



=> a² + b² + 2( 25 ) = 625

=> a² + b² + 50 = 625

=> a² + b² = 575




Now, add - 2ab on both sides,



 {a}^{2}  +  {b}^{2}  - 2ab \:  = 575 - 2ab \\  \\  \\  {(a - b)}^{2}  = 575 - 2(25)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \:  {a}^{2} +  {b}^{2} - 2ab =  {(a - b)}^{2} }  \\  \\  \\

( a - b )² = 575 - 50

( a - b )² = 525

a - b = √525

a - b = 5√21
Similar questions