Math, asked by saifahmad007, 11 months ago

(a+b-2c)x²+(2a-b-c)x+(c+a-2b)=0 ..find the value of x​

Answers

Answered by prajwal1697
0

\huge{ \underline{ \bold{ \orange{ \mathfrak{question}}:}}}

(a+b-2c)x²+(2a-b-c)x+(c+a-2b)=0 .. what is the value of x ?

__________________________

 \huge{{ \underline{ \bold{ \green{ \mathbb{SOLUTION}}:}}}}  \:

(a + b - 2c) {x}^{2}  + (2a - b - c)x + (c + a - 2b) = 0 \\ ⇛we  \: know \:  the  \: formula \:  for  \: finding \\  out  \:</strong><strong>x</strong><strong> </strong><strong>\:</strong><strong>v</strong><strong>a</strong><strong>l</strong><strong>u</strong><strong>e</strong><strong>s</strong><strong> </strong><strong>\:</strong><strong>o</strong><strong>r</strong><strong> </strong><strong>\:</strong><strong>e</strong><strong>l</strong><strong>s</strong><strong>e</strong><strong> </strong><strong>\:</strong><strong>we \:  can  \: factorise \:  the  \: middle  \: term \\

 \bold{ \overline{ \underline{ \underline{ \red{first \: method}}}:}}

⇛(a + b - 2c) {x}^{2}  + ((a + b - 2c) + (c + a - 2b)x +( c + a - 2b) = 0 \\ ⇛(a + b - 2c) {x}^{2}  + ((a + b - 2c)x + (c + a - 2b)x +( c + a - 2b) = 0 \\ ⇛(a + b - 2c)x(x + 1) + (c + a - 2b)(x + 1) = 0 \\ take \:( x + 1)  \: common \: we \: get \:  \\ ⇛(x + 1)((a + b - 2c)x + (c + a - 2b) = 0 \\ therefore \\ ⇛x =  - 1 \:  and  \:  \frac{ - (c + a - 2b)}{a + b - 2c}  =  \frac{2b - a - c}{a + b - 2c}

__________________________

 \bold{ \overline{ \underline{ \underline{ \blue{second \: method}}}:}}

we \: can \: get \: the \: same \: solution \:  \\ by \: applying \: quadratic \: formula \:  \\ which \: is \:  \\ x =  \frac{ - b \:  +  | \sqrt{ {b}^{2} - 4ac } | }{2a}  \\ and \: here \: also \: we \: get \:  \\ x =  - 1 \: and \:  \frac{2b - c - a}{a + b - 2c}

__________________________

  \underline{\overline{\underline\bold \red{final \: answer}}}

x =  - 1 \: and \:  \frac{2b - c - a}{a + b - 2c}  \:  \\

__________________________

hope it helps you

please mark as the

  \huge{\mathscr{ \underline{ \underline{  \red{BRAINLIEST}}}}}

Similar questions