(a+b)²x²-4abx-(a-b)² solve through factorisation method. find roots a & b are real numbers.
Answers
By factorisation method :-
(a + b)²x² - 4abx - (a - b)² = 0
→ (a + b)x² - [(a + b)² - (a - b)²]x - (a - b)² = 0
→ (a + b)x² - (a + b)²x + (a - b)²x - (a - b)² = 0
→ [(a + b)²x (x - 1)] + [(a - b)² (x - 1)] = 0
Take (x - 1) as common
→ (x - 1) [(a + b)²x² + (a - b)²] = 0
→
By Quadratic formula :-
(a + b)²x² - 4abx - (a - b)² = 0
We know that
x =
Here,
a = (a + b)², b = -4ab, c = (a - b)²
Substitute them in above formula
→ x =
→
→
→
→
Used identity: (a² + b²)² = a⁴ + b⁴ + 2a²b²
→ x =
→ x =
→ x =
Used identity: (a + b)² = a² + b² + 2ab
→ x =
→
Similarly;
→ x =
→ x =
→ x =
→
||✪✪ QUESTION ✪✪||
(a+b)²x²-4abx-(a-b)² solve through factorisation method. find roots a & b are real numbers.
|| ✰✰ ANSWER ✰✰ ||
Put The Equation to Zero First,
→ (a+b)²x²-4abx-(a-b)² = 0
Dividing both sides by (a+b)² we get,
→ x² - 4abx/(a + b)² - (a - b)²/(a + b)² = 0
→ x² - 4ab/(a + b)²x - [(a - b)/(a + b)]² = 0
Now, adding 4a²b²/(a + b)⁴ both sides we get,
→ x² - 4ab/(a + b)²x - [(a - b)/(a + b)]² + 4a²b²/(a + b)⁴ = 4a²b²/(a + b)⁴
→ x² - 4ab/(a + b)²x + 4a²b²/(a + b)⁴ = [(a - b)/(a + b)]² + 4a²b²/(a + b)⁴
Now, Comparing LHS, with a² + b² - 2ab = (a - b)² we get ,
→ [x - 2ab/(a + b)²]² = [ (a - b)²(a + b)² + 4a²b² ] / ( a+b)⁴
→ [x - 2ab/(a + b)²]² = [ ((a² + b²)/(a + b)²]²
Square - Root Both Sides now, we get,
→ [x - 2ab/(a + b)² ] = ± (a² + b²)/(a + b)²
→ x = [ 2ab ± (a² + b²) ] /(a + b)²
_____________
Taking (+ve) Sign now,
→ x = [2ab + (a² + b²)] / (a+b)²
As , x² + y² + 2xy = (x+y)²
→ x = (a+b)² / (a+b)²
→ x = 1.
______________
Taking (-ve) sign now,
→ x = [ 2ab - (a² + b²) ] /(a+b)²
Taking (-1) common From RHS Numerator,
→ x = (-1)[a² + b² - 2ab] /(a+b)²
Using , x² + y² - 2xy = (x-y)² now,