(a+b)^3 = a^3+3a^2b+3ab^2+b^3
right or wrong
Answers
Answered by
7
Yeah it's right ✔️
♦ Proof :-
As we know that,
→ ( a + b )³ can be written as ( a + b ) ( a + b ) ( a + b )
Now simplifying it we have ,
⇒ ( a² + b² + 2ab ) ( a + b )
Substituting 2ab = ab + ab
⇒ ( a² + b² + ab + ab ) ( a + b )
⇒ a³ + a²b + b²a + b³ + a²b + ab² + a²b + ab²
⇒ a³ + b³ + 3a²b + 3ab² .....[ Hence proved ! ]
It can also be written as a³ + b³ + 3ab ( a + b )
Hence , it is right
More information :-
Algebraic identities ,
- ( a + b )² = a² + b² + 2ab
- ( a - b )² = a² + b² - 2ab
- ( a + b ) ( a - b ) = a² - b²
- ( a + b )² - 2ab = a² + b²
Answered by
0
Answer:
⚡Yeah it is right⚡.
Proof;
(a+b)^3=(a+b)(a+b)(a+b)
After simplifying this we get;
(a^2+b^2+2ab)(a+b).
Substituting 2ab=ab+ab.
(a^2+b^2+ab+ab)(a+b)
= a^3+ab^2+a^2b+a^2b+a^2b+b^3+b^2a+b^2a
=a^3+b^3+3a^b+3ab^2.
HENCE, (PROVED).
Similar questions
Math,
3 months ago
Math,
3 months ago
Hindi,
3 months ago
Computer Science,
1 year ago
English,
1 year ago