Math, asked by drsurendrajain1234, 10 months ago

= a + b√35, find the value of ​

Attachments:

Answers

Answered by padiisgr8
0

Answer:√7 + √5)/(√7 - √5) = (√7 + √5) × √(7 + √5)/(√7 - √5) × (√7 + √5)

= (√7 + √5)²/(√7² - √5²)

= (√7² + √5² + 2√7.√5)/(7 - 5)

= (7 + 5 + 2√35)/(2)

= (12 + 2√35)/2

= 6 + √35

similarly rationalize other part,

(√7 - √5)/(√7 + √5) = (√7 - √5)²/(√7² - √5²)

= (7 + 5 - 2√35)/2

= (6 - √35)

now, (√7 + √5)/(√7 - √5) - (√7 - √5)/(√7 + √5) = a + √35 b

⇒(6 + √35) - (6 - √35) = a + √35 b

⇒0 + 2√35 = a + √35 b

on comparing we get,

a = 0 and b = 2

Answered by amansharma264
1

please mark as brilliant answer

Attachments:
Similar questions