Math, asked by bb8560821, 7 months ago

(a+b)⁴-b⁴ factories​

Answers

Answered by Mrak4760
0

Answer:

((a+b)P2)P2-bP4

?????

Step-by-step explanation:

plz follow me

Answered by Anonymous
13

ANSWER

\dashrightarrow (a+b)^4-b^4\:factorise\:these\:equation.

. IDENTITY IN USE,

\large{\boxed{\bf{ \star\:\: (a+b)^2= a^2+b^2+2ab\:\: \star}}}

\large\underline\bold{SOLUTION,}

\dashrightarrow (a+b)^4-b^4

\implies (a+b)^2(a+b)^2-b^2

\implies \bigg( a^2+b^2+2ab\bigg) \bigg( a^2+b^2+2ab\bigg) -b^4

\implies a^4+a^2b^2+2a^3b+a^2b^2+b^4+2ab^3+2a^3b+2ab^3+4a^2b^2-b^4

\implies a^4+b^4-b^4+a^2b^2+a^2b^2+4a^2b^2+2a^3b+2a^3b+2ab^3+2ab^3

\implies a^4+6a^2b^2+4a^3b+4ab^3

\implies a^4+4a^3b+4ab^3+6a^2b^2

\implies a(a^3+4a^2b+6ab^2+4b^3)

\large{\boxed{\bf{ \star\:\: a(a^3+4a^2b+6ab^2+4b^3)\:\: \star}}}

_____________

Similar questions