A+B=45° (prove that):(1+tan A). (1+tan B) =2
Answers
Answered by
2
Proof :
Given, A + B = 45°
Taking tangent to both sides, we get
tan(A + B) = tan45°
⇒ (tanA + tanB)/(1 - tanA tanB) = 1
⇒ tanA + tanB = 1 - tanA tanB
⇒ tanA + tanB + tanA tanB = 1
⇒ 1 + tanA + tanB + tanA tanB = 1 + 1
⇒ 1 (1 + tanA) + tanB (1 + tanA) = 2
⇒ (1 + tanA) (1 + tanB) = 2
Hence, proved.
Answered by
2
A+B=45°
tan(A+B)=tan45°
tan A+tan B /1-tan A tan B=1
tan A+ tan B=1-tan A+ tan B
tan A + tan B + tan A + tan B +1=1+1
tan A(1+tan B)+1(1+ tan B)=2
Similar questions