a-b=5 , a^3-b^3=1280,a^2-b^2=
Answers
Answered by
2
Step-by-step explanation:
Given:-
a-b=5
a^3-b^3=1280
To find:-
Find the value of a^2-b^2 ?
Solution:-
Given that
a - b = 5 ----------------(1)
a^3 - b^3 = 1280------(2)
We know that
a^3-b^3 = (a-b)^3 +3ab(a-b)
From (1)&(2)
=> 1280 = (5)^3 +3ab(5)
=> 1280 = 125+15ab
=> 1280-125 = 15 ab
=> 1155 = 15ab
=> 15ab = 1155
=> ab = 1155/15
ab = 77-----------------(3)
We know that
(a+b)^2 = (a-b)^2+4ab
From (1) and (3)
=> (a+b)^2 = (5)^2+4(77)
=> (a+b)^2 = 25+308
=> (a+b)^2 =333
=> a+b =√333 ---------(4)
Now the value of a^2-b^2
=>(a+b)(a-b)
From (1) and (4)
=> 5(√333)
=> 5√333
or
=> √(333×25)
=>√8325
Answer:-
The value of a^2-b^2 for the given problem is
√8325 or 5√333
Used formulae:-
- a^3-b^3 = (a-b)^3 +3ab(a-b)
- a^2-b^2=(a+b)(a-b)
- (a+b)^2 = (a-b)^2+4ab
Similar questions