(a-b)=5 and ab=3 then a³‐b³=‐‐----‐‐
15
72
80
18
Answers
Answered by
53
✑ ɢɪᴠᴇɴ :-
A + B = 5
AB = 3
✑ ᴛᴏ ғɪɴᴅ :-
A³ + B³ = ?
✑ sᴏʟᴜᴛɪᴏɴ :-
We know that,
➢ (A + B) ³ = A³ + B³ + 3AB(A + B)
So,
Put the above given values in it, we get
→ (5)³ = A³ + B³ + 3×3(5)
→ 125 = A³ + B³ + 45
→ A³ + B³ = 125 - 45 = 80
Hence,
➥ A³ + B³ = 80
➲ More Identities :-
- ( a + b) ² = a² + b² + 2ab
- ( a - b) ² = a² + b² - 2ab
- (a + b) (a - b) = a² - b²
- ( a + b) ³ = a³ + b³ + 3ab ( a + b)
- ( a - b) ³ = a³ - b³ - 3ab (a - b)
Answered by
9
Answer:
Step-by-step explanation:
The question asks us to find a^3-b^3, given that
a - b = 5 ...(i)
ab = 3 ... (ii)
now, in equation (i), cube both sides
(a-b)^3 = 5^3
a^3 - b^3 - 3ab(a - b) = 125
subtitute values for a-b and ab
a^3 - b^3 -3(3)(5) = 125
a^3 - b^3 - 45 = 125
a^3 - b^3 = 170
(options are given for [a^3 + b^3
which is
a^3 + b^3 + 3ab(a+b) = 125
a^3 + b^3 + 3(3)(5) = 125
a^3 + b^3 = 125 - 45
a^3 + b^3 = 80
hope this helps
Similar questions