Math, asked by aachal0999, 1 year ago

a+b√6=√8+√3/√8-√3 find the value of a and b

Answers

Answered by Anonymous
17

\huge\text{\underline{Answer}}

\bold\red{a =  \frac{11}{5} , b =  \frac{4}{5} }

\huge\sf\underline{Given}

\bold{a + b \sqrt{6}  =  \frac{ \sqrt{8}  +   \sqrt{3} }{ \sqrt{8} -  \sqrt{3}  }}

Rationalise the denominator :-

\implies \bold{\frac{ \sqrt{8}  +  \sqrt{3} }{ \sqrt{8}  -  \sqrt{3} }  \times  \frac{ \sqrt{8} +  \sqrt{3}  }{ \sqrt{8} +  \sqrt{3}  }  }

\implies \bold{\frac{( { \sqrt{8} +  \sqrt{3} ) }^{2} }{  8 - 3}  }

\implies \bold{\frac{8 + 3 + 2 \times  \sqrt{8}  \times  \sqrt{3} }{5} }

\implies \bold{\frac{ 11 + 2 \sqrt{24} }{5}}

\implies \bold{\frac{11}{5}  +  \frac{4 \sqrt{6} }{5}  }

By comparing with a + b 6 we get,

\implies \bold</strong><strong>\</strong><strong>r</strong><strong>e</strong><strong>d</strong><strong>{</strong><strong>  a =  \frac{11}{5} </strong><strong>,</strong><strong> </strong><strong>b =  \frac{4}{5} </strong><strong>}

Similar questions