Math, asked by anasardana3874, 1 month ago

a+b=7 and ab=3 value a3+b3

Answers

Answered by hiteshwar009
1

Answer:

280

Step-by-step explanation:

Hope this will be helpful

Attachments:
Answered by mathdude500
22

\large\underline{\sf{Given- }}

\red{\rm :\longmapsto\:a + b = 7}

and

\red{\rm :\longmapsto\:ab = 3}

\large\underline{\sf{To\:Find - }}

 \red{\rm :\longmapsto\: {a}^{3} +  {b}^{3} }

 \green{\large\underline{\sf{Solution-}}}

Given that,

\red{\rm :\longmapsto\:a + b = 7}

and

\red{\rm :\longmapsto\:ab = 3}

Consider,

 \red{\rm :\longmapsto\: {a}^{3} +  {b}^{3} }

 \rm \:  =  \:  {(a + b)}^{3} - 3ab(a + b)

 \rm \:  =  \:  {(7)}^{3} - 3(3)(7)

 \rm  \: =  \: 343 - 63

 \rm  \: =  \: 280

Hence,

 \red{\rm \implies\:\boxed{ \tt{ \:  {a}^{3} +  {b}^{3} = 280 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore more :-

More Identities to know :-

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

a² - b² = (a + b)(a - b)

(a + b)² = (a - b)² + 4ab

(a - b)² = (a + b)² - 4ab

(a + b)² + (a - b)² = 2(a² + b²)

(a + b)³ = a³ + b³ + 3ab(a + b)

(a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions