Math, asked by keshavsah62, 10 months ago

(a-b) = 7 and ab=9, then (a+b)^2 =?​

Answers

Answered by Anonymous
3

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given that
  • ( a - b ) = 7
  • ab = 9

To Find:

  • To Find the value of ( a + b )²

Solution:

We have been given that

\boxed{\sf{ a - b = 7}}

\boxed{\sf{ ab = 9}}

_________________________________

Squaring both sides in First Equation

\implies \sf{ ( a - b )^2 = (7)^2}

\implies \sf{ a^2 + b^2 - 2ab  = 49}

\implies \sf{ a^2 + b^2 - 2(9)  = 49}

\implies \sf{ a^2 + b^2 - 18  = 49}

\implies \sf{ a^2 + b^2  = 49 + 18}

\implies \boxed{\sf{ a^2 + b^2 = 67}}

_________________________________

\large\underline{\mathfrak\orange{Finding \: the \: value \: of \: given \: expression}}

\implies \sf{( a + b )^2}

\implies \sf{ a^2 + b^2 + 2ab}

\implies \sf{ 67 + 2 \: (9)}

\implies \sf{ 67 + 18}

\implies \sf{ 85}

__________________________________

\huge\underline{\sf{\red{A}\orange{n}\green{s}\pink{w}\blue{e}\purple{r}}}

\large\boxed{\sf{\red{ ( a + b )^2 = 85}}}

______________________________

\underline{\large\sf{\purple{Some  \: Basic \: Algebric \: Identities }} }

\sf{(a+b)^2 = a^2 + b^2 + 2ab}

\sf{(a-b)^2 = a^2 + b^2 - 2ab}

\sf{(a+b)^3 = a^3 + b^3 + 3ab(a+b)}

\sf{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\sf{a^3 + b^3 = (a+b)(a^2 + b^2 - ab)}

\sf{a^3 - b^3 = (a-b)(a^2 + b^2 + ab)}

______________________________

Answered by nisha382
21

Answer:

❤️HELLO❤️MATE❤️

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Given:-

  • (a - b) = 7
  • ab = 9

To find:-

  •  {(a + b)}^{2}

Solution:-

We have ,

 {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2} - 2ab

putting the given value,

 =  >  {7}^{2}  =  {a}^{2}  +  {b}^{2}  - 2.9

 =  >  {a}^{2}  +  {b}^{2}  = 49 + 18

 =  > {a}^{2}   +  {b}^{2}  = 67

Now,

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2.ab

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: = 67 + 18

 \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  = 85

Hence,the value of {a}^{2}+{b}^{2} is 85 .

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

HOPE THIS HELP YOU

Similar questions