Math, asked by dheeerajbolisetti, 1 year ago

a+b=8
ab+c+d=23
ad+bc=28

cd=12

solve in real numbers the system of equation



these points are gifts for those who solve it


Anonymous: From trial and error methods, I found that (a,b,c,d)=(4,4,3,4) satisfy the given equations.
kvnmurty: asking real numbers. do u want solutions in real numbers or only in integers ?
dheeerajbolisetti: ur trial error hasi only one solution
dheeerajbolisetti: real number with cases

Answers

Answered by kvnmurty
42
       a + b = 8  -- equation 1
       a b + c + d = 23  -- equation 2
       a d + b c = 28    -- equation 3
       c d = 12  ---  equation 4

From equation 1 and 4, we get

     b = (8 - a)  -- equation 5
     c = 12/d    -- eq 6

Substitute these two values in  equation 3
       a d + (8 - a) (12/d) = 28
       12 a + 28 d - a d^2 - 96 = 0

             a = 4 (24 - 7 d) / (12 - d^2)    --- eq  7
Substitute this in equation 5 to get,
             b = 4 d (7 - 2 d) / ( 12  - d^2)    -- eq 8

Substitute values from equations 7, 8 and 4 in equation 2.  We get

        16d (24 - 7d) (7 - 2d) / (12 - d^2)^2 + 12/d + d = 23
       16d^2 (168 - 97 d + 14 d^2) + (12 - d^2)^2 (12 -23 d + d^2) = 0
Simplifying further,
    P(d) = d^6 - 23 d^5 + 212 d^4 - 1000 d^3 + 2544 d^2 - 3312 d + 1728 = 0  -- eq 9
There are six real roots for this equation.  They are all positive - can be found found from Descarte's rule for zeroes.

    Roots are factors of  12^3 or 1728 ie.,  from the list of 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, etc.
        
     Trying 2, 3, 4, and 6. They are satisfied.  Now, we can write the 6th degree polynomial in d as follows.  here x is not known yet.

     P(d) = (d - 2) (d - 3) (d - 4) (d - 6) [d^2 - x d + 1728/(2*3*4*6) ] = 0

          Comparing the coefficient of d^3, -23 = -x - 10 -5    => x = 8

     factors of (x^2 - 8 d + 1728/144)  are  (d - 2) and (d - 6)

  So the roots of P(d) are  d = 2, 3, 4, and 6.  Here  2 and 6 occur twice.

 Now for solving the given system of equations.  Given equations are symmetric in a and b.  They are also symmetric in c and d.  Hence there will be solutions with interchange of values of a and b,  as well as  c and d.

Solution 1:
       d = 2,  c  = 6 ,  a = (96-56)/(12-4) = 5,  b = 8 - 5 = 3
Solution 2
       d = 3,  c = 4,    a = (96 - 84)/(12 - 9) = 4,  b = 8 - 4 = 4
Solution 3
        d = 4,  c = 3,  a = (96 - 112)/ (12 - 16) = 4 ,  b = 4
Solution 4
       d = 6,  c = 2,  a = 3 ,    b = 8 - 3 = 5

========================================
 solutions are :  (5, 3, 6, 2)  ,  (4, 4, 3, 4),  (4, 4, 4, 3)  and  (3, 5, 2, 6)


kvnmurty: click on thank you and select best answer
kvnmurty: hope its clear and understandable.
Anonymous: It's clearer than a crystal. Even my ninth-grade brother understood that.
dheeerajbolisetti: u did it
kvnmurty: select best answer
dheeerajbolisetti: no ways
kvnmurty: what is meant by "no ways ?"
kvnmurty: u r welcome
Answered by Anonymous
2

Answer:

a + b = 8  -- equation 1

      a b + c + d = 23  -- equation 2

      a d + b c = 28    -- equation 3

      c d = 12  ---  equation 4

From equation 1 and 4, we get

    b = (8 - a)  -- equation 5

    c = 12/d    -- eq 6

Substitute these two values in  equation 3

      a d + (8 - a) (12/d) = 28

      12 a + 28 d - a d^2 - 96 = 0

            a = 4 (24 - 7 d) / (12 - d^2)    --- eq  7

Substitute this in equation 5 to get,

            b = 4 d (7 - 2 d) / ( 12  - d^2)    -- eq 8

Substitute values from equations 7, 8 and 4 in equation 2.  We get

       16d (24 - 7d) (7 - 2d) / (12 - d^2)^2 + 12/d + d = 23

      16d^2 (168 - 97 d + 14 d^2) + (12 - d^2)^2 (12 -23 d + d^2) = 0

Simplifying further,

   P(d) = d^6 - 23 d^5 + 212 d^4 - 1000 d^3 + 2544 d^2 - 3312 d + 1728 = 0  -- eq 9

There are six real roots for this equation.  They are all positive - can be found found from Descarte's rule for zeroes.

   Roots are factors of  12^3 or 1728 ie.,  from the list of 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, etc.

       

    Trying 2, 3, 4, and 6. They are satisfied.  Now, we can write the 6th degree polynomial in d as follows.  here x is not known yet.

    P(d) = (d - 2) (d - 3) (d - 4) (d - 6) [d^2 - x d + 1728/(2*3*4*6) ] = 0

         Comparing the coefficient of d^3, -23 = -x - 10 -5    => x = 8

    factors of (x^2 - 8 d + 1728/144)  are  (d - 2) and (d - 6)

 So the roots of P(d) are  d = 2, 3, 4, and 6.  Here  2 and 6 occur twice.

Now for solving the given system of equations.  Given equations are symmetric in a and b.  They are also symmetric in c and d.  Hence there will be solutions with interchange of values of a and b,  as well as  c and d.

Solution 1:

      d = 2,  c  = 6 ,  a = (96-56)/(12-4) = 5,  b = 8 - 5 = 3

Solution 2

      d = 3,  c = 4,    a = (96 - 84)/(12 - 9) = 4,  b = 8 - 4 = 4

Solution 3

       d = 4,  c = 3,  a = (96 - 112)/ (12 - 16) = 4 ,  b = 4

Solution 4

      d = 6,  c = 2,  a = 3 ,    b = 8 - 3 = 5

========================================

solutions are :  (5, 3, 6, 2)  ,  (4, 4, 3, 4),  (4, 4, 4, 3)  and  (3, 5, 2, 6)

Step-by-step explanation:

Similar questions