a+b=8 and ab=6 find the value of a³+b³
Answers
Answered by
96
@
a+b=8
ab=6
We know that
(a+b)³=a³+b³+3ab(a+b)
(8)³=a³+b³+3×6(8)
512=a³+b³+144
512-144=a³+b³
368=a³+b³
@:-)
a+b=8
ab=6
We know that
(a+b)³=a³+b³+3ab(a+b)
(8)³=a³+b³+3×6(8)
512=a³+b³+144
512-144=a³+b³
368=a³+b³
@:-)
Answered by
117
Hey !
Given :-
a+b=8
ab=6
Identity :-
a³+b³+3ab(a+b) = (a+b)³
a³+b³ +3× 6 × 8 = (8)³
a³+b³+144 = 512
a³+b³ = 512-144
a³+b³ = 368
Hope this Helps You !!
Given :-
a+b=8
ab=6
Identity :-
a³+b³+3ab(a+b) = (a+b)³
a³+b³ +3× 6 × 8 = (8)³
a³+b³+144 = 512
a³+b³ = 512-144
a³+b³ = 368
Hope this Helps You !!
Similar questions