Math, asked by maheshwari212, 1 year ago

A+b=9 and ab=20 then find a^3+b^3

Answers

Answered by badboiiii
0

Answer:

189

Step-by-step explanation:

(a+b)^3=a^3+b^3+3ab(a+b)

putting the values given

9^3=a^3+b^3+3(20)(9)

729=a^3+b^3+540

a^3+b^3=729-540

=189

Answered by malikmohaman
4

Step-by-step explanation:

ab = 20 \\ a =  \frac{20}{b}

Now we put the value of a in a+b=9

a + b = 9 \\  \frac{20}{b}  + b = 9 \\  \frac{20 +  {b}^{2} }{b}  = 9 \\ 20 +  {b}^{2}  = 9b \\  {b}^{2}  - 9b + 20 = 0 \\  {b}^{2}  - 5b - 4b + 20 = 0 \\ b(b - 5) - 4(b - 5) = 0 \\ (b - 5)(b - 4)  = 0 \\

b=5 or 4

Now we put b= 5 in a+b=9

a + b=9

a+5=9

a=9-5

a=4

Now we put b=4 in a+b=9

a+b=9

a+4=9

a=9-4

a=5

ATQ

Case 1 a=4 & b=5

 {a}^{3}  +  b {}^{3}  \\ 4 {}^{3}  +  {5}^{3}  \\ 64 + 125 \\ 189

Case 2 a=5 & b=4

Similarly , its answer will be 189

Similar questions