Math, asked by Sanjanasingh9102, 10 months ago

A+B=90 then simplest form root sinAsecB - sinAcosB

Answers

Answered by raagapurushotham
3

Answer:

cos A

Step-by-step explanation:

Given sinA*secB_sinA*cosB

secB=1/cosB

=[sinA/cosB]_[sinA*cosB]

cos B=cos(90_A) = sinA

= sinA/sin A _ sinA*sin A

=1 _(sinA)^

BY THE IDENTITY ( cosA)^2 + (sinA)^2 = 1

then =(cosA)^2

Answered by hukam0685
6

Answer:

\sqrt{sin \: A \: sec B - sin \: A \: cos \: B}  = cos \: A\\

Step-by-step explanation:

If

A+B =90°

To find the simplest form of

 \sqrt{sin \: A \: sec \: B - sin \: A \: cos \: B}  \\  \\

As we know that

sec(90 -  \theta) = cosec \: \theta \\cos(90 -  \theta) = sin \: \theta

So put the value of b in terms of a

\sqrt{sin \: A \: sec \: (90 - A) - sin \: A \: cos \: (90 -A)}  \\  \\

\sqrt{sin \: A \: cosec \: A- sin \: A \: sin \: A}  \\  \\

\sqrt{sin \: A \times\:\frac{1}{sin \: A} -  {sin}^{2}  \: A \: }  \\ \\

 =\sqrt{1 -  {sin}^{2}A }\\  \\

= \sqrt{ {cos}^{2}A }\\ \\

  = cos \: A \\\\

\because\:1 - {sin}^{2}A={cos}^{2}A }\\

Hope it helps you.

Similar questions