A+b=90° then prove √tanAtanB+tanAcotB/sinAsecB_sin^2B/cos^2=tanA
Answers
Answered by
8
HELLO DEAR USER!!!!✌️✌️
HERE IS YOUR ANSWER GOES LIKE THIS :
===========================================================================================
YOUR QUESTION:
A+B=90° Then prove that √tanAtanB+tanAcotB/sinAsecB_sin^2B/cos^2=tanA
ANSWER:
given,LHS=√tanAtanB+tanAcotB/sinAsecB-sin²B/cos²B
=√tanAtan(90-A)+tanAcot(90-A)/sinAsec(90-A)-sin²(90-A)/cos²A
=√tanAcotA+tanAtanA/sinAcosecA-cos²A/cos²A
=√1+tan²A/1-1
=√tan²A
=tanA
===================================================================================
❤️I HOPE THIS WILL HELP YOU❤️
HAVE A GREAT DAY AHEAD✌️✌️
^_^
HERE IS YOUR ANSWER GOES LIKE THIS :
===========================================================================================
YOUR QUESTION:
A+B=90° Then prove that √tanAtanB+tanAcotB/sinAsecB_sin^2B/cos^2=tanA
ANSWER:
given,LHS=√tanAtanB+tanAcotB/sinAsecB-sin²B/cos²B
=√tanAtan(90-A)+tanAcot(90-A)/sinAsec(90-A)-sin²(90-A)/cos²A
=√tanAcotA+tanAtanA/sinAcosecA-cos²A/cos²A
=√1+tan²A/1-1
=√tan²A
=tanA
===================================================================================
❤️I HOPE THIS WILL HELP YOU❤️
HAVE A GREAT DAY AHEAD✌️✌️
^_^
Answered by
0
√tanAtanB+tanAcotB/sinAsecB-sin^2B/cos^2A=tanA ( correct question)
Given:
A+B =90°
To Prove:
√tanAtanB + tanAcotB/sinAsecB - sin^2B/cos^2A=tanA
Proof:
1) In this question we will apply the following property of the trigonometry.
- Sin(90° - ∅) = cos ∅
- cos(90° - ∅) = sin ∅
- cosec(90° - ∅) = sec ∅
- Sec(90° - ∅) = cosec ∅
- tan(90° - ∅) = cot ∅
- cot(90° - ∅) = tan ∅
2) Solution of the question:
- √(tanAtanB + tanAcotB/sinAsecB - sin²B/cos²A)
- √(tanAtan(90° - A) + tanAcot(90° - A)/sinAsec(90° - A) - sin²B/cos²(90° - B))
- √(tanA cotA + tanAtanA/sinAcosecA - sin²B/sin²B)
- √(1 + tan²A / 1 - 1)
- √(sec²A - 1)
- √tan²A
- tanA
LHS = RHS
Similar questions