Math, asked by sushma16674, 1 year ago

A+b=90° then prove √tanAtanB+tanAcotB/sinAsecB_sin^2B/cos^2=tanA

Answers

Answered by Bhavanavindamuri
8
HELLO DEAR USER!!!!✌️✌️



HERE IS YOUR ANSWER GOES LIKE THIS :


===========================================================================================


YOUR QUESTION:

A+B=90
° Then prove that tanAtanB+tanAcotB/sinAsecB_sin^2B/cos^2=tanA


ANSWER:

given,LHS=
tanAtanB+tanAcotB/sinAsecB-sin²B/cos²B

=
tanAtan(90-A)+tanAcot(90-A)/sinAsec(90-A)-sin²(90-A)/cos²A

=
tanAcotA+tanAtanA/sinAcosecA-cos²A/cos²A

=
1+tan²A/1-1

=
tan²A

=tanA


===================================================================================



❤️I HOPE THIS WILL HELP YOU❤️



HAVE A GREAT DAY AHEAD✌️✌️



^_^


Answered by DevendraLal
0

√tanAtanB+tanAcotB/sinAsecB-sin^2B/cos^2A=tanA ( correct question)

Given:

A+B =90°

To Prove:

√tanAtanB + tanAcotB/sinAsecB - sin^2B/cos^2A=tanA

Proof:

1) In this question we will apply the following property of the trigonometry.

  • Sin(90° - ∅) = cos ∅
  • cos(90° - ∅) = sin ∅
  • cosec(90° - ∅) = sec ∅
  • Sec(90° - ∅) = cosec ∅
  • tan(90° - ∅) = cot ∅
  • cot(90° - ∅) = tan ∅

2) Solution of the question:

  • √(tanAtanB + tanAcotB/sinAsecB - sin²B/cos²A)
  • √(tanAtan(90° - A) + tanAcot(90° - A)/sinAsec(90° - A) - sin²B/cos²(90° - B))
  • √(tanA cotA + tanAtanA/sinAcosecA - sin²B/sin²B)
  • √(1 + tan²A / 1 - 1)
  • √(sec²A - 1)
  • √tan²A
  • tanA

LHS = RHS

Similar questions