A + B = 90°,
then,
sin² A + sin² B / cos² A+ cos² B
Answers
Answered by
0
Answer:
sin²A + sin² B / cos² A + cos² B
=> sin² ( A + B) / cos² ( A + B)
=> sin²90° / cos²90°
=> 1/0
=> 1
Answered by
2
Given:
- A + B = 90°
ㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤ
To find:
- (sin² A + sin² B )/(cos² A+ cos² B)
ㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤ
Step-by-step explanation:
ㅤㅤㅤㅤㅤ
We have,
- (sin² A + sin² B )/(cos² A+ cos² B)
- (sin²(A + B))/(cos²(A + B)
ㅤㅤㅤㅤㅤ
As we are provided that A + B = 90°, so we will substitute its value in the above equation and then using trigonometric table, we will find the value of sin 90° and cos 90°. At last doing basic mathematical calculations, we can easily find out its value.
ㅤㅤㅤㅤㅤ
- (sin² 90°)/(cos² 90°)
ㅤㅤㅤㅤㅤ
- sin 90° = 1
- cos 90° = 0
Substituting the values, we have:
- = 1²/0
- = 1/0
- = undefined ∞
ㅤㅤㅤㅤㅤ
ㅤㅤㅤㅤㅤ
Trigonometric table:
━━━━━━━━━━━━━━━━━━━━━
Similar questions