Math, asked by mohithboi, 15 days ago

A + B = 90°,
then,
sin² A + sin² B / cos² A+ cos² B​

Answers

Answered by anikcharit
0

Answer:

sin²A + sin² B / cos² A + cos² B

=> sin² ( A + B) / cos² ( A + B)

=> sin²90° / cos²90°

=> 1/0

=> 1

Answered by Anonymous
2

Given:

  • A + B = 90°

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

To find:

  • (sin² A + sin² B )/(cos² A+ cos² B)

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

Step-by-step explanation:

ㅤㅤㅤㅤㅤ

We have,

  • (sin² A + sin² B )/(cos² A+ cos² B)
  • (sin²(A + B))/(cos²(A + B)

ㅤㅤㅤㅤㅤ

As we are provided that A + B = 90°, so we will substitute its value in the above equation and then using trigonometric table, we will find the value of sin 90° and cos 90°. At last doing basic mathematical calculations, we can easily find out its value.

ㅤㅤㅤㅤㅤ

  • (sin² 90°)/(cos² 90°)

ㅤㅤㅤㅤㅤ

  • sin 90° = 1
  • cos 90° = 0

Substituting the values, we have:

  • = 1²/0
  • = 1/0
  • = undefined ∞

ㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤ

Trigonometric table:

 \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

━━━━━━━━━━━━━━━━━━━━━

Similar questions