a+b
a−b
+
a+b
3a−2b
+
a+b
5a−3b
+ .... up to 20 term
Answers
Answered by
1
Step-by-step explanation:
From the given series we have
From the given series we havea ( 1st term) =a+ba−b,n=11
From the given series we havea ( 1st term) =a+ba−b,n=11d=(a+b)(3a−2b)−(a+b)(a−b)
From the given series we havea ( 1st term) =a+ba−b,n=11d=(a+b)(3a−2b)−(a+b)(a−b)=a+b3a−2b−(a−b)=a+b3a−2b−a+b
From the given series we havea ( 1st term) =a+ba−b,n=11d=(a+b)(3a−2b)−(a+b)(a−b)=a+b3a−2b−(a−b)=a+b3a−2b−a+b⇒d=a+b2a−b
From the given series we havea ( 1st term) =a+ba−b,n=11d=(a+b)(3a−2b)−(a+b)(a−b)=a+b3a−2b−(a−b)=a+b3a−2b−a+b⇒d=a+b2a−bNow, Sn=2n[2a+(n−1)d]
From the given series we havea ( 1st term) =a+ba−b,n=11d=(a+b)(3a−2b)−(a+b)(a−b)=a+b3a−2b−(a−b)=a+b3a−2b−a+b⇒d=a+b2a−bNow, Sn=2n[2a+(n−1)d]⇒S11=211[(a+b)2(a−b)+(11−1)(a+b)(2a−b)]
From the given series we havea ( 1st term) =a+ba−b,n=11d=(a+b)(3a−2b)−(a+b)(a−b)=a+b3a−2b−(a−b)=a+b3a−2b−a+b⇒d=a+b2a−bNow, Sn=2n[2a+(n−1)d]⇒S11=211[(a+b)2(a−b)+(11−1)(a+b)(2a−b)]=2(a+b)11[2a−2b+20a−10b]
From the given series we havea ( 1st term) =a+ba−b,n=11d=(a+b)(3a−2b)−(a+b)(a−b)=a+b3a−2b−(a−b)=a+b3a−2b−a+b⇒d=a+b2a−bNow, Sn=2n[2a+(n−1)d]⇒S11=211[(a+b)2(a−b)+(11−1)(a+b)(2a−b)]=2(a+b)11[2a−2b+20a−10b]=(a+b11(11a−6b)
Similar questions