Math, asked by TbiaSupreme, 1 year ago

a*b = a+b+ab on Q-{-1} ,Find the identity element for the given binary operation and inverse of any element in case it exists (provided identity exists).

Answers

Answered by MaheswariS
0

Answer:

1. Identitty element of  G is 0

2. Inverse of a is

\frac{-a}{1+a}

Step-by-step explanation:

Let G = Q-{-1}

1.

\text{Let e be the identity element of G}

Then, by definition of identity element, a*e=e*a=a \text{for all}a\in\:G

\implies\:a*e=a

\implies\:a+e+ae=a

\implies\:e+ae=0

\implies\:e(1+a)=0

\text{But }a\neq\:-1

\implies\:e=0

2.

\text{Let }a\in\:G

\text{Let }a^{-1}\:\text{be the inverse of a}

Then, by definition of inverse, a*a^{-1}=a^{-1}*a=e

\implies\:a*a^{-1}=e

\implies\:a+a^{-1}+a\:a^{-1}=0

\implies\:a^{-1}+a\:a^{-1}=-a

\implies\:a^{-1}(1+a)=-a

\implies\:a^{-1}=\frac{-a}{1+a}\:\in\:G \:(\because\:a\neq\:-1)

Answered by pulakmath007
2

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

An operation * is defined as :

 \sf{ \: a*b = a+b+ab \:  \:  \:  \:  \:  \:  \:  \forall \: a , b  \in\mathbb{Q} -  \{ - 1 \} \: }

TO DETERMINE

  • The identity element for the given binary operation

  • The inverse of any element in case it exists (provided identity exists)

CALCULATION

CLOSURE PROPERTY UNDER OPERATION *

 \sf{For  \:  \: a, b \in  \mathbb{Q} -  \{ - 1 \}}

 \sf{  a+b+ab   \in \mathbb{Q}-  \{ - 1 \} \: }

  \implies \: \sf{ \: a*b  \in \mathbb{Q} -  \{ - 1 \} \: }

So

 \sf{\mathbb{Q} - \{ -  1 \} \:  \: is  \: closed \: under \: the \: operation\: }

EXISTENCE OF IDENTITY

Let e be the identity element

 \sf{let  \:  \: a \in  \mathbb{Q} -  \{ - 1 \}}

 \sf{Then  \:  \:  \: a*e = e*a = a}

 \sf{Now \:  \:  \:  a*e = a \:  \: \:   gives}

 \sf {a + e + ae = a}

  \implies \: \sf { e + ae = 0}

  \implies \: \sf { e (1 + a) = 0}

  \implies \: \sf { e = 0} \:  \: \:  \:  ( \because \: \: a \in  \mathbb{Q} -  \{ - 1 \} \: )

Hence 0 is the identity element

EXISTENCE OF INVERSE

 \sf{let  \:  \: a \in  \mathbb{Q} -  \{ - 1 \}}

 \sf{let  \:  \: b \in  \mathbb{Q} -  \{ - 1 \}} \: be \: the \: inverse \: of \: a

 \sf{Then  \:  \:  \: a*b = b*a = e}

 \implies \:  \sf{ a*b = b*a = 0}

Now

 \:  \sf{ a*b  = 0} \:  \: gives

 \implies \:  \sf{a + b - ab = 0}

 \implies \:  \sf{ b - ab =  - a}

 \implies \:  \sf{ b(1 - a) =  - a}

 \displaystyle \:  \implies \:  \sf{ b=   \frac{a}{a - 1} }

Hence

 \displaystyle \:   \:  \sf{ \frac{a}{a - 1} } \:  \: is \: the \: inverse \: of  \: \: a

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Represent all possible one-one functions from the set A = {1, 2} to the set B = {3,4,5) using arrow diagram.

https://brainly.in/question/22321917

Similar questions