(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0
Answers
Answered by
2
as we know the identity (a-b)(a+b) = a²-b²
also (b-c)(b+c) = b²-c²
and (c-a)(c+a)=c²-a²
Therefore, Substituing this in question
(a²-b²)+(b²-c²)+(c²-a²)
By opening brackets
a²-b²+b²-c²+c²-a²
a²-a²+b²-b²+c²-c²
0+0+0 = 0
So answer is 0
also (b-c)(b+c) = b²-c²
and (c-a)(c+a)=c²-a²
Therefore, Substituing this in question
(a²-b²)+(b²-c²)+(c²-a²)
By opening brackets
a²-b²+b²-c²+c²-a²
a²-a²+b²-b²+c²-c²
0+0+0 = 0
So answer is 0
Answered by
0
To prove;
(a-b) (a+b) + (b-c) (b+ c) + (c-a) (c + a) = 0
Proof;
L.H.S.
=> (a-b) (a+b) + (b-c) (b+ c) + (c-a) (c + a)
=> {(a-b)(a+b)} + {(b+c)(b-c)} + {(c-a)(c+a)}
According to algebric identities one of the identity is that :-
=> (x-y)(x+y) = x² - y²
So,
(a-b) (a+b) = a² - b²
(b-c)(b+c) = b² - c²
(c-a)(c+a) = c² - a²
So, putting values ;
=> a² - b² + b² - c² + c² - a²
=> a² - a² + b² - b² + c² - c²
=> 0 [<---- L.H.S.]
R.H.S.
=> 0 [<----- R.H.S.]
- Since, L.H.S. = R.H.S.
Therefore, proved that (a-b) (a+b) + (b-c) (b+ c) + (c-a) (c + a) = 0
Similar questions