(a+b) (a-b) formula please give explanation like (a+b) ²=a²+b²+2ab ok
Answers
Answer:
(a+b) (a-b)
(a+b) (a-b)= a(a-b) + b(a-b)
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand Side
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9By applying formula we get answer directly
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9By applying formula we get answer directly(a+b) (a-b)
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9By applying formula we get answer directly(a+b) (a-b)=a^2 - ab +ab - b^2
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9By applying formula we get answer directly(a+b) (a-b)=a^2 - ab +ab - b^2= 5^2 - 5*4 +5*4 - 4^2
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9By applying formula we get answer directly(a+b) (a-b)=a^2 - ab +ab - b^2= 5^2 - 5*4 +5*4 - 4^2=25-20+20-16
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9By applying formula we get answer directly(a+b) (a-b)=a^2 - ab +ab - b^2= 5^2 - 5*4 +5*4 - 4^2=25-20+20-16=25 - 16
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9By applying formula we get answer directly(a+b) (a-b)=a^2 - ab +ab - b^2= 5^2 - 5*4 +5*4 - 4^2=25-20+20-16=25 - 16= 9
(a+b) (a-b)= a(a-b) + b(a-b)= (a*a) - (a*b) + (b*a) - (b*b)=a^2 - ab + ba - b^2= a^2 - b^2= Right Hand SideHence proved.Now, let's take an example.Let a = 5 and b =4(a+b) (a-b)= 5^2 - 4^2= 25 - 16= 9By applying formula we get answer directly(a+b) (a-b)=a^2 - ab +ab - b^2= 5^2 - 5*4 +5*4 - 4^2=25-20+20-16=25 - 16= 9I hope this was helpful.