Math, asked by Ayana1209, 4 months ago

A B and C are points on a circle center O. TA is a tangent to the circle at A and OBT is a straight line. AC is a diameter and angle OTA=24 degrees. Calculate angle AOT angle ACB angle ABT​

Answers

Answered by anjumanyasmin
7

Given:

\text { TA is a tangent to the cirde at } A \text {. }

\therefore \text { angle } O A T=90^{\circ}

\therefore \text { angle } A O T=180^{\circ}-0 A T-{T}=180^{0}-90^{\circ}-24^{\circ}

=90^{\circ}-24^{\circ}=66^{\circ}

\because O A=O B \quad \therefore O \hat{A} B=OBA

\therefore \hat{O A} B=0 \hat{B A}=\left(180^{\circ}-A \hat{O} T\right) \div 2=\left(180^{\circ}-66^{\circ} \div 2\right.

=114^{\circ} \div 2=57^{\circ}

\because \text { A. B and C are points on a circle, c entre o. }

\begin{array}{l}\therefore A \hat{B C -}90^{\circ}\\\therefore A C B=180^{\circ}-A \hat{B C}=O\hat{A} B=180^{}-90^{\circ}-57^{\circ}\\=90^{\circ}-57^{0}=33^{\circ}\end{array}

ABT=180^{\circ}-0 \hat{B} A=180^{0}-57^{\circ}=123^{\circ}

The angles are as follows:

angle AOT=66°

angle ACB=33°

angle ABT​=123°

Similar questions