A, b and c are positive integer such that a^2+b^2-2bc=100 and 2ab-c^2=100 then the value of (a+b) /c is
Answers
Correct question should be:
A, b and c are positive integer such that a² + 2b²- 2bc = 100 and 2ab - c² = 100 then the value of (a+b) /c is?
Given:
a, b & c are positive integers such that
a² + 2b² - 2bc = 100 ........ (i)
and
2ab - c² = 100 ....... (ii)
To find:
Solution:
Now,
On comparing eq. (i) & (ii), we get
a² + 2b² - 2bc = 2ab - c²
⇒ a² + b² + b² - 2bc = 2ab - c²
⇒ a² + b² + b² - 2bc - 2ab + c² = 0
⇒ [a² - 2ab + b²] + [b² - 2bc + c²] = 0
We know: (a - b)² = a² - 2ab + b²
⇒ [a - b]² + [b - c]² = 0
∴ [a - b]² = 0 & [b - c]² = 0
⇒ [a - b] = 0 & [b - c] = 0
⇒ a = b & b = c
⇒ a = b = c
Let's assume a = b = c = "x"
We will substitute a = b = c = x in eq. (i)
x² + 2x² - 2xx = 100
⇒ x² + 2x² - 2x² = 100
⇒ x² = 100
⇒ x = ± 10
We will now substitute the value a = b = c = + 10 in (a+b)/c, we get
=
=
= 2
Similarly, substituting a = b = c = - 10 in (a+b)/c, we get
=
=
= 2
Thus,
---------------------------------------------------------------------------------------
Also View:
If a, b and c are positive integers, then (a – b – c) 3 – a3 + b3 + c3 is always divisible by (1) Only (a + b) (2) Only (b + c) (3) 3(a – b) (4) 3(a + b)(b + c)(a + c)
https://brainly.in/question/12722587
A,b,c are positive numbers such that a+b+ab=8,b+c+bc=15 and c+a+ca=35 what is tha value of a+b+c+abc=?
https://brainly.in/question/5479109
Integers a,b,c satisfy a+b-c=1 and a2+b2-c2= -1. What is the sum of all possible values of a2+b2+c2 ?
https://brainly.in/question/5260971